Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 131333 by ZiYangLee last updated on 03/Feb/21

Given that    { ((x+y=2)),((x^2 +y^2 =6)) :}  find the value of x^3 +y^3 .

$$\mathrm{Given}\:\mathrm{that}\: \\ $$$$\begin{cases}{{x}+{y}=\mathrm{2}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{6}}\end{cases} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} . \\ $$

Answered by mr W last updated on 03/Feb/21

x^2 +y^2 =(x+y)^2 −2xy  6=2^2 −2xy  ⇒xy=−1    x^3 +y^3 =(x+y)^3 −3xy(x+y)  =2^3 −3(−1)(2)  =14

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}{xy} \\ $$$$\mathrm{6}=\mathrm{2}^{\mathrm{2}} −\mathrm{2}{xy} \\ $$$$\Rightarrow{xy}=−\mathrm{1} \\ $$$$ \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\left({x}+{y}\right)^{\mathrm{3}} −\mathrm{3}{xy}\left({x}+{y}\right) \\ $$$$=\mathrm{2}^{\mathrm{3}} −\mathrm{3}\left(−\mathrm{1}\right)\left(\mathrm{2}\right) \\ $$$$=\mathrm{14} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com