Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 214414 by ChantalYah last updated on 07/Dec/24

Given that the roots of the equation  ax^2 +bx+c=0 are α and β,   show that;  λμb^2 =ac(λ+μ)^2  where (α/β)=(λ/μ)                             Mr Hans

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}=\mathrm{0}\:\mathrm{are}\:\alpha\:\mathrm{and}\:\beta, \\ $$$$\:\mathrm{show}\:\mathrm{that}; \\ $$$$\lambda\mu\mathrm{b}^{\mathrm{2}} =\mathrm{ac}\left(\lambda+\mu\right)^{\mathrm{2}} \:\mathrm{where}\:\frac{\alpha}{\beta}=\frac{\lambda}{\mu} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Mr}\:{Hans} \\ $$

Answered by A5T last updated on 07/Dec/24

(α/β)=(λ/μ)⇒((α+β)/β)=((λ+μ)/μ)⇒(((α+β)^2 )/β^2 )=(((λ+μ)^2 )/μ^2 )  α+β=−(b/a)⇒(α+β)^2 =(b^2 /a^2 )  ⇒(b^2 /(a^2 β^2 ))=(((λ+μ)^2 )/μ^2 )⇒λμb^2 =(λ/μ)(λ+μ)^2 a^2 β^2   ⇒λμb^2 =((α(λ+μ)^2 a^2 β^2 )/β)=αβa^2 (λ+μ)^2   αβ=(c/a)⇒λμb^2 =ac(λ+μ)^2                                    ■

$$\frac{\alpha}{\beta}=\frac{\lambda}{\mu}\Rightarrow\frac{\alpha+\beta}{\beta}=\frac{\lambda+\mu}{\mu}\Rightarrow\frac{\left(\alpha+\beta\right)^{\mathrm{2}} }{\beta^{\mathrm{2}} }=\frac{\left(\lambda+\mu\right)^{\mathrm{2}} }{\mu^{\mathrm{2}} } \\ $$$$\alpha+\beta=−\frac{{b}}{{a}}\Rightarrow\left(\alpha+\beta\right)^{\mathrm{2}} =\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \beta^{\mathrm{2}} }=\frac{\left(\lambda+\mu\right)^{\mathrm{2}} }{\mu^{\mathrm{2}} }\Rightarrow\lambda\mu{b}^{\mathrm{2}} =\frac{\lambda}{\mu}\left(\lambda+\mu\right)^{\mathrm{2}} {a}^{\mathrm{2}} \beta^{\mathrm{2}} \\ $$$$\Rightarrow\lambda\mu{b}^{\mathrm{2}} =\frac{\alpha\left(\lambda+\mu\right)^{\mathrm{2}} {a}^{\mathrm{2}} \beta^{\mathrm{2}} }{\beta}=\alpha\beta{a}^{\mathrm{2}} \left(\lambda+\mu\right)^{\mathrm{2}} \\ $$$$\alpha\beta=\frac{{c}}{{a}}\Rightarrow\lambda\mu{b}^{\mathrm{2}} ={ac}\left(\lambda+\mu\right)^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\blacksquare \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com