Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 24764 by NECx last updated on 25/Nov/17

Given that the function f:R→R  is defined by f(x)=x^n .For what  values of n,if any,is fof=f.f?  For each of these values of n find  fof.

$${Given}\:{that}\:{the}\:{function}\:{f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${is}\:{defined}\:{by}\:{f}\left({x}\right)={x}^{{n}} .{For}\:{what} \\ $$$${values}\:{of}\:{n},{if}\:{any},{is}\:{fof}={f}.{f}? \\ $$$${For}\:{each}\:{of}\:{these}\:{values}\:{of}\:{n}\:{find} \\ $$$${fof}. \\ $$

Answered by mrW1 last updated on 25/Nov/17

(x^n )^n =x^n ×x^n   x^(n×n) =x^(n+n)   ⇒n×n=n+n  ⇒n=0 or 2    with n=0  f(x)=1  fof=1    with n=2  f(x)=x^2   fof=x^4

$$\left({x}^{{n}} \right)^{{n}} ={x}^{{n}} ×{x}^{{n}} \\ $$$${x}^{{n}×{n}} ={x}^{{n}+{n}} \\ $$$$\Rightarrow{n}×{n}={n}+{n} \\ $$$$\Rightarrow{n}=\mathrm{0}\:{or}\:\mathrm{2} \\ $$$$ \\ $$$${with}\:{n}=\mathrm{0} \\ $$$${f}\left({x}\right)=\mathrm{1} \\ $$$${fof}=\mathrm{1} \\ $$$$ \\ $$$${with}\:{n}=\mathrm{2} \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} \\ $$$${fof}={x}^{\mathrm{4}} \\ $$

Answered by ajfour last updated on 25/Nov/17

fof=f[f(x)]=f(x^n )=(x^n )^n =x^((n^2 ))   f.f=(x^n )^2 =x^(2n)   fof=f.f  ⇒    n^2 =2n  or    n(n−2)=0    ⇒   n=0, 2  for n=0 :  f(x)=x^0 =1   hence  fof=1  for n=2 :  f(x)=x^2    hence    fof=x^4  .

$${fof}={f}\left[{f}\left({x}\right)\right]={f}\left({x}^{{n}} \right)=\left({x}^{{n}} \right)^{{n}} ={x}^{\left({n}^{\mathrm{2}} \right)} \\ $$$${f}.{f}=\left({x}^{{n}} \right)^{\mathrm{2}} ={x}^{\mathrm{2}{n}} \\ $$$${fof}={f}.{f}\:\:\Rightarrow\:\:\:\:{n}^{\mathrm{2}} =\mathrm{2}{n} \\ $$$${or}\:\:\:\:{n}\left({n}−\mathrm{2}\right)=\mathrm{0}\:\:\:\:\Rightarrow\:\:\:\boldsymbol{{n}}=\mathrm{0},\:\mathrm{2} \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{n}}=\mathrm{0}\:: \\ $$$${f}\left({x}\right)={x}^{\mathrm{0}} =\mathrm{1}\:\:\:{hence}\:\:{fof}=\mathrm{1} \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{n}}=\mathrm{2}\:: \\ $$$${f}\left({x}\right)={x}^{\mathrm{2}} \:\:\:{hence}\:\:\:\:{fof}={x}^{\mathrm{4}} \:. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com