Question Number 204083 by Tawa11 last updated on 05/Feb/24 | ||
![]() | ||
Given that tan(A + B) = 1 and tan(A - B) = 1/7 find tan A and tan B | ||
Answered by a.lgnaoui last updated on 06/Feb/24 | ||
![]() | ||
$$\boldsymbol{\mathrm{posons}}\:\:\boldsymbol{\mathrm{t}}\mathrm{1}=\mathrm{tan}\:\boldsymbol{\mathrm{A}}\:\:\:\:\:\:\boldsymbol{\mathrm{t}}\mathrm{2}=\mathrm{tan}\:\boldsymbol{\mathrm{B}} \\ $$$$\begin{cases}{\frac{\boldsymbol{\mathrm{t}}\mathrm{1}+\boldsymbol{\mathrm{t}}\mathrm{2}}{\mathrm{1}−\boldsymbol{\mathrm{t}}\mathrm{1}\boldsymbol{\mathrm{t}}\mathrm{2}}=\:\mathrm{1}}\\{\frac{\boldsymbol{\mathrm{t}}\mathrm{1}−\boldsymbol{\mathrm{t}}\mathrm{2}}{\mathrm{1}+\boldsymbol{\mathrm{t}}\mathrm{1}\boldsymbol{\mathrm{t}}\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{7}}}\end{cases} \\ $$$$\boldsymbol{\mathrm{t}}\mathrm{1}+\boldsymbol{\mathrm{t}}\mathrm{2}=\mathrm{1}−\boldsymbol{\mathrm{t}}\mathrm{1}\boldsymbol{\mathrm{t}}\mathrm{2} \\ $$$$\boldsymbol{\mathrm{t}}\mathrm{1}−\boldsymbol{\mathrm{t}}\mathrm{2}=\frac{\mathrm{1}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{7}}\boldsymbol{\mathrm{t}}\mathrm{1}\boldsymbol{\mathrm{t}}\mathrm{2} \\ $$$$\mathrm{2}\boldsymbol{\mathrm{t}}\mathrm{1}=\frac{\mathrm{8}−\mathrm{6}\boldsymbol{\mathrm{t}}\mathrm{1}\boldsymbol{\mathrm{t}}\mathrm{2}}{\mathrm{7}}\:\:\:\:\:\boldsymbol{\mathrm{t}}\mathrm{1}=\frac{\mathrm{4}}{\mathrm{3}\boldsymbol{\mathrm{t}}\mathrm{2}+\mathrm{7}} \\ $$$$\boldsymbol{\mathrm{t}}\mathrm{2}+\frac{\mathrm{4}}{\mathrm{3}\boldsymbol{\mathrm{t}}\mathrm{2}+\mathrm{7}}=\mathrm{1}−\frac{\mathrm{4}\boldsymbol{\mathrm{t}}\mathrm{2}}{\mathrm{3}\boldsymbol{\mathrm{t}}\mathrm{2}+\mathrm{7}} \\ $$$$\mathrm{3}\left(\boldsymbol{\mathrm{t}}\mathrm{2}\right)^{\mathrm{2}} +\mathrm{8}\boldsymbol{\mathrm{t}}\mathrm{2}−\mathrm{3}=\mathrm{0} \\ $$$$\:\:\bigtriangleup'=\mathrm{5}^{\mathrm{2}} \:\:\:\:\:\begin{cases}{\boldsymbol{\mathrm{t}}\mathrm{2}=\frac{\mathrm{1}}{\mathrm{6}}}\\{\boldsymbol{\mathrm{t}}\mathrm{2}=\frac{−\mathrm{3}}{\mathrm{2}}}\end{cases} \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\:\:\boldsymbol{\mathrm{t}}\mathrm{2}=\frac{\mathrm{1}}{\mathrm{6}}\:\:\:\:\:\boldsymbol{\mathrm{t}}\mathrm{1}=\frac{\mathrm{8}}{\mathrm{15}} \\ $$$$ \\ $$$$ \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{t}}\mathrm{2}=\frac{−\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\boldsymbol{\mathrm{t}}\mathrm{1}=−\frac{\mathrm{8}}{\mathrm{23}} \\ $$$$ \\ $$$$\:\:\: \\ $$$$\mathrm{tan}\:\mathrm{A}=\frac{\mathrm{8}}{\mathrm{15}}\:\:\:\:\:\:\:\:\mathrm{tan}\:\mathrm{B}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\mathrm{tan}\:\mathrm{A}=\:\frac{\mathrm{8}}{\mathrm{23}}\:\:\:\:\:\:\:\:\mathrm{tan}\:\mathrm{B}=\frac{−\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\: \\ $$$$\: \\ $$ | ||
Commented by Frix last updated on 06/Feb/24 | ||
![]() | ||
$$\mathrm{Method}\:\mathrm{ok}\:\mathrm{but}\:\mathrm{calculation}\:\mathrm{error}: \\ $$$$\mathrm{3}{t}_{\mathrm{2}} ^{\mathrm{2}} +\mathrm{8}{t}_{\mathrm{2}} −\mathrm{3}=\mathrm{0} \\ $$$$\Rightarrow\:{t}_{\mathrm{2}} =−\mathrm{3}\vee{t}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{3}} \\ $$ | ||
Commented by Tawa11 last updated on 06/Feb/24 | ||
![]() | ||
$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$ | ||
Commented by a.lgnaoui last updated on 07/Feb/24 | ||
![]() | ||
$$\mathrm{thank}\:\mathrm{you}\: \\ $$ | ||
Answered by cortano12 last updated on 06/Feb/24 | ||
![]() |