Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 110357 by Aina Samuel Temidayo last updated on 28/Aug/20

Given that p,q are primes and pq  divides p^2 +q^2 −4. How many  possible values does ∣p−q∣ have?

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{p},\mathrm{q}\:\mathrm{are}\:\mathrm{primes}\:\mathrm{and}\:\mathrm{pq} \\ $$$$\mathrm{divides}\:\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} −\mathrm{4}.\:\mathrm{How}\:\mathrm{many} \\ $$$$\mathrm{possible}\:\mathrm{values}\:\mathrm{does}\:\mid\mathrm{p}−\mathrm{q}\mid\:\mathrm{have}? \\ $$

Commented by Aina Samuel Temidayo last updated on 28/Aug/20

Any help please?

$$\mathrm{Any}\:\mathrm{help}\:\mathrm{please}? \\ $$

Answered by Rasheed.Sindhi last updated on 28/Aug/20

pq ∣ p^2 +q^2 −4 (given)  p^2 +q^2 −4=kpq (say)   •Case-1: p=2 (Or q=2 due to symmetricity  no difference)  p^2 +q^2 −4=kpq⇒2q^2 −4=kq^2    q^2 =(4/(2−k))⇒k=1⇒q=±2  (p,q)=(2,2),(−2,−2),(2,−2),(−2,2)  ∣2−2∣=∣−2−(−2)∣=0  ∣2−(−2)∣=∣−2−2∣=4  •Case-2:p,q both odd prime  Let p=2u+1 & q=2v+1  (2u+1)^2 +(2v+1)^2 −4=k(2u+1)(2v+1)  4u^2 +4u+1+4v^2 +4v+1−4           =k(4uv+2(u+v)+1)  4u^2 +4u+4v^2 +4v−2           =k(4uv+2(u+v)+1)  Left side is even  ∴ Right side is even  4uv+2(u+v)+1∈O⇒k∈E  So now we can let  p^2 +q^2 −4=kpq⇒p^2 +q^2 −4=2mpq    Continue

$${pq}\:\mid\:{p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{4}\:\left({given}\right) \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{4}={kpq}\:\left({say}\right)\: \\ $$$$\bullet{Case}-\mathrm{1}:\:{p}=\mathrm{2}\:\left({Or}\:{q}=\mathrm{2}\:{due}\:{to}\:{symmetricity}\right. \\ $$$$\left.{no}\:{difference}\right) \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{4}={kpq}\Rightarrow\mathrm{2}{q}^{\mathrm{2}} −\mathrm{4}={kq}^{\mathrm{2}} \: \\ $$$${q}^{\mathrm{2}} =\frac{\mathrm{4}}{\mathrm{2}−{k}}\Rightarrow{k}=\mathrm{1}\Rightarrow{q}=\pm\mathrm{2} \\ $$$$\left({p},{q}\right)=\left(\mathrm{2},\mathrm{2}\right),\left(−\mathrm{2},−\mathrm{2}\right),\left(\mathrm{2},−\mathrm{2}\right),\left(−\mathrm{2},\mathrm{2}\right) \\ $$$$\mid\mathrm{2}−\mathrm{2}\mid=\mid−\mathrm{2}−\left(−\mathrm{2}\right)\mid=\mathrm{0} \\ $$$$\mid\mathrm{2}−\left(−\mathrm{2}\right)\mid=\mid−\mathrm{2}−\mathrm{2}\mid=\mathrm{4} \\ $$$$\bullet{Case}-\mathrm{2}:{p},{q}\:{both}\:{odd}\:{prime} \\ $$$${Let}\:{p}=\mathrm{2}{u}+\mathrm{1}\:\&\:{q}=\mathrm{2}{v}+\mathrm{1} \\ $$$$\left(\mathrm{2}{u}+\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}{v}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}={k}\left(\mathrm{2}{u}+\mathrm{1}\right)\left(\mathrm{2}{v}+\mathrm{1}\right) \\ $$$$\mathrm{4}{u}^{\mathrm{2}} +\mathrm{4}{u}+\mathrm{1}+\mathrm{4}{v}^{\mathrm{2}} +\mathrm{4}{v}+\mathrm{1}−\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:={k}\left(\mathrm{4}{uv}+\mathrm{2}\left({u}+{v}\right)+\mathrm{1}\right) \\ $$$$\mathrm{4}{u}^{\mathrm{2}} +\mathrm{4}{u}+\mathrm{4}{v}^{\mathrm{2}} +\mathrm{4}{v}−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:={k}\left(\mathrm{4}{uv}+\mathrm{2}\left({u}+{v}\right)+\mathrm{1}\right) \\ $$$${Left}\:{side}\:{is}\:{even} \\ $$$$\therefore\:{Right}\:{side}\:{is}\:{even} \\ $$$$\mathrm{4}{uv}+\mathrm{2}\left({u}+{v}\right)+\mathrm{1}\in\mathbb{O}\Rightarrow{k}\in\mathbb{E} \\ $$$${So}\:{now}\:{we}\:{can}\:{let} \\ $$$${p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{4}={kpq}\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\mathrm{4}=\mathrm{2}{mpq} \\ $$$$ \\ $$$${Continue} \\ $$$$ \\ $$$$ \\ $$

Commented by Rasheed.Sindhi last updated on 28/Aug/20

I′m trying...The forum is full of  experts, so no worry!

$${I}'{m}\:{trying}...\mathcal{T}{he}\:{forum}\:{is}\:{full}\:{of} \\ $$$${experts},\:{so}\:{no}\:{worry}! \\ $$

Commented by Aina Samuel Temidayo last updated on 28/Aug/20

Thanks, but Sir I don′t know how to  finish it. I will be glad if you can for  me.

$$\mathrm{Thanks},\:\mathrm{but}\:\mathrm{Sir}\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{how}\:\mathrm{to} \\ $$$$\mathrm{finish}\:\mathrm{it}.\:\mathrm{I}\:\mathrm{will}\:\mathrm{be}\:\mathrm{glad}\:\mathrm{if}\:\mathrm{you}\:\mathrm{can}\:\mathrm{for} \\ $$$$\mathrm{me}. \\ $$

Answered by 1549442205PVT last updated on 29/Aug/20

From the hypothesis pq∣(p^2 +q^2 −4)  we have p^2 +q^2 −4=kpq(k∈N^∗ )(1)  ⇔(p−q)^2 +2pq−4 =kpq  ⇔(p−q+2)(p−q−2)=(k−2)pq(∗)  Since p,q play  equal role in above  equality,WLOG we can assume that p≥q  i)Case  p=q then 2p^2 −4=kp^2   ⇔(2−k)p^2 =4⇒k=1(due to p≥2)  ⇒p=q=2⇒∣p−q∣=0  ii)Case p>q.  •If k=2 then(1)⇔(p−q)^2 =4⇔p−q=2  •If k≠2  From (∗) since p,q∈P,  we infer has two cases  a) If p∣(p−q+2)⇒((p−q+2)/p)=m∈N^∗   (due to p−q+2≥1)⇒((2−q)/p)=m−1≥0  ⇒2−q≥0⇒2−q=0⇒q=2.Replace  into (1)we get p^2 =2kp⇒p=2k⇒k=1  (due to p is prime)⇒p=q=2.Above done  b)If p∣(p−q−2).Since p−q−2>0,  ((p−q−2)/p)=n∈N^∗ ⇒n≥1  ⇔((−q−2)/p)=n−1≥0.This is impossible  Thus,answer of given problem is  ∣p−q∣∈{0,2}

$$\mathrm{From}\:\mathrm{the}\:\mathrm{hypothesis}\:\mathrm{pq}\mid\left(\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} −\mathrm{4}\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} −\mathrm{4}=\mathrm{kpq}\left(\mathrm{k}\in\mathbb{N}^{\ast} \right)\left(\mathrm{1}\right) \\ $$$$\Leftrightarrow\left(\mathrm{p}−\mathrm{q}\right)^{\mathrm{2}} +\mathrm{2pq}−\mathrm{4}\:=\mathrm{kpq} \\ $$$$\Leftrightarrow\left(\mathrm{p}−\mathrm{q}+\mathrm{2}\right)\left(\mathrm{p}−\mathrm{q}−\mathrm{2}\right)=\left(\mathrm{k}−\mathrm{2}\right)\mathrm{pq}\left(\ast\right) \\ $$$$\mathrm{Since}\:\mathrm{p},\mathrm{q}\:\mathrm{play}\:\:\mathrm{equal}\:\mathrm{role}\:\mathrm{in}\:\mathrm{above} \\ $$$$\mathrm{equality},\mathrm{WLOG}\:\mathrm{we}\:\mathrm{can}\:\mathrm{assume}\:\mathrm{that}\:\mathrm{p}\geqslant\mathrm{q} \\ $$$$\left.\mathrm{i}\right)\mathrm{Case}\:\:\mathrm{p}=\mathrm{q}\:\mathrm{then}\:\mathrm{2p}^{\mathrm{2}} −\mathrm{4}=\mathrm{kp}^{\mathrm{2}} \\ $$$$\Leftrightarrow\left(\mathrm{2}−\mathrm{k}\right)\mathrm{p}^{\mathrm{2}} =\mathrm{4}\Rightarrow\mathrm{k}=\mathrm{1}\left(\mathrm{due}\:\mathrm{to}\:\mathrm{p}\geqslant\mathrm{2}\right) \\ $$$$\Rightarrow\mathrm{p}=\mathrm{q}=\mathrm{2}\Rightarrow\mid\mathrm{p}−\mathrm{q}\mid=\mathrm{0} \\ $$$$\left.\mathrm{ii}\right)\mathrm{Case}\:\mathrm{p}>\mathrm{q}. \\ $$$$\bullet\mathrm{If}\:\mathrm{k}=\mathrm{2}\:\mathrm{then}\left(\mathrm{1}\right)\Leftrightarrow\left(\mathrm{p}−\mathrm{q}\right)^{\mathrm{2}} =\mathrm{4}\Leftrightarrow\mathrm{p}−\mathrm{q}=\mathrm{2} \\ $$$$\bullet\mathrm{If}\:\mathrm{k}\neq\mathrm{2} \\ $$$$\mathrm{From}\:\left(\ast\right)\:\mathrm{since}\:\mathrm{p},\mathrm{q}\in\mathscr{P}, \\ $$$$\mathrm{we}\:\mathrm{infer}\:\mathrm{has}\:\mathrm{two}\:\mathrm{cases} \\ $$$$\left.\mathrm{a}\right)\:\mathrm{If}\:\mathrm{p}\mid\left(\mathrm{p}−\mathrm{q}+\mathrm{2}\right)\Rightarrow\frac{\mathrm{p}−\mathrm{q}+\mathrm{2}}{\mathrm{p}}=\mathrm{m}\in\mathbb{N}^{\ast} \\ $$$$\left(\mathrm{due}\:\mathrm{to}\:\mathrm{p}−\mathrm{q}+\mathrm{2}\geqslant\mathrm{1}\right)\Rightarrow\frac{\mathrm{2}−\mathrm{q}}{\mathrm{p}}=\mathrm{m}−\mathrm{1}\geqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}−\mathrm{q}\geqslant\mathrm{0}\Rightarrow\mathrm{2}−\mathrm{q}=\mathrm{0}\Rightarrow\mathrm{q}=\mathrm{2}.\mathrm{Replace} \\ $$$$\mathrm{into}\:\left(\mathrm{1}\right)\mathrm{we}\:\mathrm{get}\:\mathrm{p}^{\mathrm{2}} =\mathrm{2kp}\Rightarrow\mathrm{p}=\mathrm{2k}\Rightarrow\mathrm{k}=\mathrm{1} \\ $$$$\left(\mathrm{due}\:\mathrm{to}\:\mathrm{p}\:\mathrm{is}\:\mathrm{prime}\right)\Rightarrow\mathrm{p}=\mathrm{q}=\mathrm{2}.\mathrm{Above}\:\mathrm{done} \\ $$$$\left.\mathrm{b}\right)\mathrm{If}\:\mathrm{p}\mid\left(\mathrm{p}−\mathrm{q}−\mathrm{2}\right).\mathrm{Since}\:\mathrm{p}−\mathrm{q}−\mathrm{2}>\mathrm{0}, \\ $$$$\frac{\mathrm{p}−\mathrm{q}−\mathrm{2}}{\mathrm{p}}=\mathrm{n}\in\mathbb{N}^{\ast} \Rightarrow\mathrm{n}\geqslant\mathrm{1} \\ $$$$\Leftrightarrow\frac{−\mathrm{q}−\mathrm{2}}{\mathrm{p}}=\mathrm{n}−\mathrm{1}\geqslant\mathrm{0}.\mathrm{This}\:\mathrm{is}\:\mathrm{impossible} \\ $$$$\mathrm{Thus},\mathrm{answer}\:\mathrm{of}\:\mathrm{given}\:\mathrm{problem}\:\mathrm{is} \\ $$$$\mid\mathrm{p}−\mathrm{q}\mid\in\left\{\mathrm{0},\mathrm{2}\right\} \\ $$

Commented by Aina Samuel Temidayo last updated on 29/Aug/20

Thanks but what do you mean by ′p,q   play equal role in the above equality′?

$$\mathrm{Thanks}\:\mathrm{but}\:\mathrm{what}\:\mathrm{do}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{by}\:'\mathrm{p},\mathrm{q}\: \\ $$$$\mathrm{play}\:\mathrm{equal}\:\mathrm{role}\:\mathrm{in}\:\mathrm{the}\:\mathrm{above}\:\mathrm{equality}'? \\ $$

Commented by 1549442205PVT last updated on 30/Aug/20

p,q have  equal roles ,when change their  positions for each other then the equality  don′t change

$$\mathrm{p},\mathrm{q}\:\mathrm{have}\:\:\mathrm{equal}\:\mathrm{roles}\:,\mathrm{when}\:\mathrm{change}\:\mathrm{their} \\ $$$$\mathrm{positions}\:\mathrm{for}\:\mathrm{each}\:\mathrm{other}\:\mathrm{then}\:\mathrm{the}\:\mathrm{equality} \\ $$$$\mathrm{don}'\mathrm{t}\:\mathrm{change} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com