Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 97413 by Rio Michael last updated on 08/Jun/20

Given that ω = e^(iθ) , θ≠ nπ , n ∈N  show that (1 + ω)^n  = 2^n ((1/2)θ)e^((1/2)(inθ))   please help me out on this, i′ve stumbled on it.

$$\mathrm{Given}\:\mathrm{that}\:\omega\:=\:{e}^{{i}\theta} ,\:\theta\neq\:{n}\pi\:,\:{n}\:\in\mathbb{N} \\ $$$$\mathrm{show}\:\mathrm{that}\:\left(\mathrm{1}\:+\:\omega\right)^{{n}} \:=\:\mathrm{2}^{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right){e}^{\frac{\mathrm{1}}{\mathrm{2}}\left({in}\theta\right)} \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{out}\:\mathrm{on}\:\mathrm{this},\:\mathrm{i}'\mathrm{ve}\:\mathrm{stumbled}\:\mathrm{on}\:\mathrm{it}. \\ $$

Answered by mathmax by abdo last updated on 08/Jun/20

(1+w)^n  =(1+cosθ +isinθ)^n  =(2cos^2 ((θ/2))+2isin((θ/2))cos((θ/2)))^n   =(2cos((θ/2)))^n  (cos((θ/2))+isin((θ/2)))^n   =2^n  cos^n ((θ/2)) (e^((iθ)/2) )^n  =2^n  cos^n ((θ/2)) e^((inθ)/2)   there is a error in the Question!

$$\left(\mathrm{1}+\mathrm{w}\right)^{\mathrm{n}} \:=\left(\mathrm{1}+\mathrm{cos}\theta\:+\mathrm{isin}\theta\right)^{\mathrm{n}} \:=\left(\mathrm{2cos}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)+\mathrm{2isin}\left(\frac{\theta}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\theta}{\mathrm{2}}\right)\right)^{\mathrm{n}} \\ $$$$=\left(\mathrm{2cos}\left(\frac{\theta}{\mathrm{2}}\right)\right)^{\mathrm{n}} \:\left(\mathrm{cos}\left(\frac{\theta}{\mathrm{2}}\right)+\mathrm{isin}\left(\frac{\theta}{\mathrm{2}}\right)\right)^{\mathrm{n}} \\ $$$$=\mathrm{2}^{\mathrm{n}} \:\mathrm{cos}^{\mathrm{n}} \left(\frac{\theta}{\mathrm{2}}\right)\:\left(\mathrm{e}^{\frac{\mathrm{i}\theta}{\mathrm{2}}} \right)^{\mathrm{n}} \:=\mathrm{2}^{\mathrm{n}} \:\mathrm{cos}^{\mathrm{n}} \left(\frac{\theta}{\mathrm{2}}\right)\:\mathrm{e}^{\frac{\mathrm{in}\theta}{\mathrm{2}}} \\ $$$$\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{error}\:\mathrm{in}\:\mathrm{the}\:\mathrm{Question}!\: \\ $$

Commented by Rio Michael last updated on 08/Jun/20

What a relief sir,i tried it out 10 times but can′t  arrive at the required proof. Thank you so much.

$$\mathrm{What}\:\mathrm{a}\:\mathrm{relief}\:\mathrm{sir},\mathrm{i}\:\mathrm{tried}\:\mathrm{it}\:\mathrm{out}\:\mathrm{10}\:\mathrm{times}\:\mathrm{but}\:\mathrm{can}'\mathrm{t} \\ $$$$\mathrm{arrive}\:\mathrm{at}\:\mathrm{the}\:\mathrm{required}\:\mathrm{proof}.\:\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}. \\ $$

Commented by mathmax by abdo last updated on 08/Jun/20

you are welcome .

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com