Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 35594 by Rio Mike last updated on 20/May/18

Given that 18,24,and k + 14 are   three consecutive terms of an   arithmetic progression Find  a) the common difference  b) the value of k  c)the first term if the 4^(th)  term is  12.  d) the sum of the first twelve terms of  the progression.

$${Given}\:{that}\:\mathrm{18},\mathrm{24},{and}\:{k}\:+\:\mathrm{14}\:{are}\: \\ $$$${three}\:{consecutive}\:{terms}\:{of}\:{an}\: \\ $$$${arithmetic}\:{progression}\:{Find} \\ $$$$\left.{a}\right)\:{the}\:{common}\:{difference} \\ $$$$\left.{b}\right)\:{the}\:{value}\:{of}\:{k} \\ $$$$\left.{c}\right){the}\:{first}\:{term}\:{if}\:{the}\:\mathrm{4}^{{th}} \:{term}\:{is} \\ $$$$\mathrm{12}. \\ $$$$\left.{d}\right)\:{the}\:{sum}\:{of}\:{the}\:{first}\:{twelve}\:{terms}\:{of} \\ $$$${the}\:{progression}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 20/May/18

a)c.d=6  b)k+14=30  k=16  c)a+(4−1)×6=12  a=−6  d)s=((12)/2){2×−6+(12−1)×6}  =6(−12+66)  =6×54  =324

$$\left.{a}\right){c}.{d}=\mathrm{6} \\ $$$$\left.{b}\right){k}+\mathrm{14}=\mathrm{30} \\ $$$${k}=\mathrm{16} \\ $$$$\left.{c}\right){a}+\left(\mathrm{4}−\mathrm{1}\right)×\mathrm{6}=\mathrm{12} \\ $$$${a}=−\mathrm{6} \\ $$$$\left.{d}\right){s}=\frac{\mathrm{12}}{\mathrm{2}}\left\{\mathrm{2}×−\mathrm{6}+\left(\mathrm{12}−\mathrm{1}\right)×\mathrm{6}\right\} \\ $$$$=\mathrm{6}\left(−\mathrm{12}+\mathrm{66}\right) \\ $$$$=\mathrm{6}×\mathrm{54} \\ $$$$=\mathrm{324} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com