Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 62109 by sandhyavs last updated on 15/Jun/19

Given that  (1+(√(1+x)))tan x=(1+(√(1−x))).  Then find   sin 4x.

$${Given}\:{that} \\ $$$$\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}}\right)\mathrm{tan}\:{x}=\left(\mathrm{1}+\sqrt{\mathrm{1}−{x}}\right). \\ $$$${Then}\:{find}\:\:\:\mathrm{sin}\:\mathrm{4}{x}. \\ $$

Commented by sandhyavs last updated on 15/Jun/19

Also tell me the steps.Please...

$${Also}\:{tell}\:{me}\:{the}\:{steps}.{Please}... \\ $$

Commented by sandhyavs last updated on 15/Jun/19

please answer me...

$${please}\:{answer}\:{me}... \\ $$

Answered by MJS last updated on 15/Jun/19

tan x =t  (1+(√(1+x)))t =1+(√(1−x))  (√(1−x))−t(√(1+x))=t−1  squaring and transforming  2t(√(1−x))(√(1+x))=(t^2 −1)x+2t  squaring and transforming  ((t^2 +1)^2 x+4t(t^2 −1))x=0  ⇒ x=0 ∨ x=((4t(1−t)(1+t))/((t^2 +1)^2 ))  t=tan x  x=4sin x cos x (cos^2  x −sin^2  x)=sin 4x

$$\mathrm{tan}\:{x}\:={t} \\ $$$$\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}}\right){t}\:=\mathrm{1}+\sqrt{\mathrm{1}−{x}} \\ $$$$\sqrt{\mathrm{1}−{x}}−{t}\sqrt{\mathrm{1}+{x}}={t}−\mathrm{1} \\ $$$$\mathrm{squaring}\:\mathrm{and}\:\mathrm{transforming} \\ $$$$\mathrm{2}{t}\sqrt{\mathrm{1}−{x}}\sqrt{\mathrm{1}+{x}}=\left({t}^{\mathrm{2}} −\mathrm{1}\right){x}+\mathrm{2}{t} \\ $$$$\mathrm{squaring}\:\mathrm{and}\:\mathrm{transforming} \\ $$$$\left(\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} {x}+\mathrm{4}{t}\left({t}^{\mathrm{2}} −\mathrm{1}\right)\right){x}=\mathrm{0} \\ $$$$\Rightarrow\:{x}=\mathrm{0}\:\vee\:{x}=\frac{\mathrm{4}{t}\left(\mathrm{1}−{t}\right)\left(\mathrm{1}+{t}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${t}=\mathrm{tan}\:{x} \\ $$$${x}=\mathrm{4sin}\:{x}\:\mathrm{cos}\:{x}\:\left(\mathrm{cos}^{\mathrm{2}} \:{x}\:−\mathrm{sin}^{\mathrm{2}} \:{x}\right)=\mathrm{sin}\:\mathrm{4}{x} \\ $$

Commented by sandhyavs last updated on 15/Jun/19

thank you so much.

$${thank}\:{you}\:{so}\:{much}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com