Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 144166 by liberty last updated on 22/Jun/21

Given p^→ =(√2) i^� +2(√3) j^� + (√3) k^�  &    q^→ =a i^� +j^�  +2k^�  . If proj_q^→   p^→  = ((2(√2))/9) q^→    then ∣q^→ ∣ =?

$$\mathrm{Given}\:\overset{\rightarrow} {\mathrm{p}}=\sqrt{\mathrm{2}}\:\hat {\mathrm{i}}+\mathrm{2}\sqrt{\mathrm{3}}\:\hat {\mathrm{j}}+\:\sqrt{\mathrm{3}}\:\hat {\mathrm{k}}\:\&\: \\ $$ $$\:\overset{\rightarrow} {\mathrm{q}}=\mathrm{a}\:\hat {\mathrm{i}}+\hat {\mathrm{j}}\:+\mathrm{2}\hat {\mathrm{k}}\:.\:\mathrm{If}\:\mathrm{proj}_{\overset{\rightarrow} {\mathrm{q}}} \:\overset{\rightarrow} {\mathrm{p}}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{9}}\:\overset{\rightarrow} {\mathrm{q}}\: \\ $$ $$\mathrm{then}\:\mid\overset{\rightarrow} {\mathrm{q}}\mid\:=?\: \\ $$

Answered by benjo_mathlover last updated on 23/Jun/21

[ ((p^→ .q^→ )/(∣q^→ ∣^2 )) ]q^→  = ((2(√2))/9) q^→   [ ((a(√2) +2(√3)+2(√3))/(5+a^2 )) ]=((2(√2))/9)   9a(√2) +36(√3) = 10(√2) +2(√2) a^2   2(√2)a^2 −9(√2)a+10(√2)−36(√3)=0  a = ((9(√2) ± (√(162−4(40−73(√6)))))/(4(√2)))  a=((9(√2) ± (√(292(√6)+2)))/(4(√2)))

$$\left[\:\frac{\overset{\rightarrow} {\mathrm{p}}.\overset{\rightarrow} {\mathrm{q}}}{\mid\overset{\rightarrow} {\mathrm{q}}\mid^{\mathrm{2}} }\:\right]\overset{\rightarrow} {\mathrm{q}}\:=\:\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{9}}\:\overset{\rightarrow} {\mathrm{q}} \\ $$ $$\left[\:\frac{\mathrm{a}\sqrt{\mathrm{2}}\:+\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{5}+\mathrm{a}^{\mathrm{2}} }\:\right]=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{9}}\: \\ $$ $$\mathrm{9a}\sqrt{\mathrm{2}}\:+\mathrm{36}\sqrt{\mathrm{3}}\:=\:\mathrm{10}\sqrt{\mathrm{2}}\:+\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{a}^{\mathrm{2}} \\ $$ $$\mathrm{2}\sqrt{\mathrm{2}}\mathrm{a}^{\mathrm{2}} −\mathrm{9}\sqrt{\mathrm{2}}\mathrm{a}+\mathrm{10}\sqrt{\mathrm{2}}−\mathrm{36}\sqrt{\mathrm{3}}=\mathrm{0} \\ $$ $$\mathrm{a}\:=\:\frac{\mathrm{9}\sqrt{\mathrm{2}}\:\pm\:\sqrt{\mathrm{162}−\mathrm{4}\left(\mathrm{40}−\mathrm{73}\sqrt{\mathrm{6}}\right)}}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$ $$\mathrm{a}=\frac{\mathrm{9}\sqrt{\mathrm{2}}\:\pm\:\sqrt{\mathrm{292}\sqrt{\mathrm{6}}+\mathrm{2}}}{\mathrm{4}\sqrt{\mathrm{2}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com