Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 31713 by gunawan last updated on 13/Mar/18

Given n ∈ N  prove that  Σ_(k=1) ^n k(n+1−k)= ((( n+2)),((     3)) )

$$\mathrm{Given}\:{n}\:\in\:\mathbb{N} \\ $$$$\mathrm{prove}\:\mathrm{that} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({n}+\mathrm{1}−{k}\right)=\begin{pmatrix}{\:{n}+\mathrm{2}}\\{\:\:\:\:\:\mathrm{3}}\end{pmatrix} \\ $$

Commented by abdo imad last updated on 13/Mar/18

we have Σ_(k=1) ^n k(n+1−k)= (n+1)Σ_(k=1) ^n k −Σ_(k=1) ^n k^2   =(n+1)((n(n+1))/2) −((n(n+1)(2n+1))/6)  =((n(n+1))/2)(n+1  −((2n+1)/3))=((n(n+1))/2)( ((n +2)/3))  = ((n(n+1)(n+2))/6) from anotherside  C_(n+2) ^3 =(((n+2)!)/(3!(n+2−3)!))=(((n+2)!)/(6(n−1)′))=(((n+2)(n+1)n (n−1)!)/(6(n−1)!))  = ((n(n+1)(n+2))/6)  ⇒ Σ_(k=1) ^n k(n+1−k) = C_(n+2) ^3  .

$${we}\:{have}\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}\left({n}+\mathrm{1}−{k}\right)=\:\left({n}+\mathrm{1}\right)\sum_{{k}=\mathrm{1}} ^{{n}} {k}\:−\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{2}} \\ $$$$=\left({n}+\mathrm{1}\right)\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:−\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\left({n}+\mathrm{1}\:\:−\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{3}}\right)=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\left(\:\frac{{n}\:+\mathrm{2}}{\mathrm{3}}\right) \\ $$$$=\:\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{6}}\:{from}\:{anotherside} \\ $$$${C}_{{n}+\mathrm{2}} ^{\mathrm{3}} =\frac{\left({n}+\mathrm{2}\right)!}{\mathrm{3}!\left({n}+\mathrm{2}−\mathrm{3}\right)!}=\frac{\left({n}+\mathrm{2}\right)!}{\mathrm{6}\left({n}−\mathrm{1}\right)'}=\frac{\left({n}+\mathrm{2}\right)\left({n}+\mathrm{1}\right){n}\:\left({n}−\mathrm{1}\right)!}{\mathrm{6}\left({n}−\mathrm{1}\right)!} \\ $$$$=\:\frac{{n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)}{\mathrm{6}}\:\:\Rightarrow\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}\left({n}+\mathrm{1}−{k}\right)\:=\:{C}_{{n}+\mathrm{2}} ^{\mathrm{3}} \:. \\ $$

Commented by Tinkutara last updated on 13/Mar/18

I now understand your notation!  You write C_(n+2) ^3  instead of^(n+2) C_3 .  But actually C_(n+2) ^3 =0 for n>1.

$${I}\:{now}\:{understand}\:{your}\:{notation}! \\ $$$${You}\:{write}\:{C}_{{n}+\mathrm{2}} ^{\mathrm{3}} \:{instead}\:{of}\:^{{n}+\mathrm{2}} {C}_{\mathrm{3}} . \\ $$$${But}\:{actually}\:{C}_{{n}+\mathrm{2}} ^{\mathrm{3}} =\mathrm{0}\:{for}\:{n}>\mathrm{1}. \\ $$

Commented by abdo imad last updated on 13/Mar/18

i have used the notation  C_n ^p =((n!)/(p!(n−p)!)) for p≤n .

$${i}\:{have}\:{used}\:{the}\:{notation}\:\:{C}_{{n}} ^{{p}} =\frac{{n}!}{{p}!\left({n}−{p}\right)!}\:{for}\:{p}\leqslant{n}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com