Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 110440 by bemath last updated on 29/Aug/20

Given lim_(x→0) (f(x)+(1/(f(x)))) = 2 , find the  value of lim_(x→0)  f(x).

$$\mathrm{Given}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{f}\left(\mathrm{x}\right)+\frac{\mathrm{1}}{\mathrm{f}\left(\mathrm{x}\right)}\right)\:=\:\mathrm{2}\:,\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right). \\ $$

Answered by john santu last updated on 29/Aug/20

 let g(x) = f(x)+(1/(f(x))) & lim_(x→0)  g(x)=2  ⇔ (f(x))^2 −f(x).g(x)+1 = 0  by quadratic formula  f(x) = ((g(x)±(√((g(x)^2 −4)))/2)  then lim_(x→0) f(x) = lim_(x→0) (((g(x)±(√((g(x)^2 −4)))/2))  = ((g(0)± (√((g(0)^2 −4)))/2) = ((2±(√(4−4)))/2) = 1

$$\:{let}\:{g}\left({x}\right)\:=\:{f}\left({x}\right)+\frac{\mathrm{1}}{{f}\left({x}\right)}\:\&\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{g}\left({x}\right)=\mathrm{2} \\ $$$$\Leftrightarrow\:\left({f}\left({x}\right)\right)^{\mathrm{2}} −{f}\left({x}\right).{g}\left({x}\right)+\mathrm{1}\:=\:\mathrm{0} \\ $$$${by}\:{quadratic}\:{formula} \\ $$$${f}\left({x}\right)\:=\:\frac{{g}\left({x}\right)\pm\sqrt{\left({g}\left({x}\right)^{\mathrm{2}} −\mathrm{4}\right.}}{\mathrm{2}} \\ $$$${then}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{f}\left({x}\right)\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{{g}\left({x}\right)\pm\sqrt{\left({g}\left({x}\right)^{\mathrm{2}} −\mathrm{4}\right.}}{\mathrm{2}}\right) \\ $$$$=\:\frac{{g}\left(\mathrm{0}\right)\pm\:\sqrt{\left({g}\left(\mathrm{0}\right)^{\mathrm{2}} −\mathrm{4}\right.}}{\mathrm{2}}\:=\:\frac{\mathrm{2}\pm\sqrt{\mathrm{4}−\mathrm{4}}}{\mathrm{2}}\:=\:\mathrm{1} \\ $$

Commented by bemath last updated on 29/Aug/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com