Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 134506 by bemath last updated on 04/Mar/21

Given g(x) = ((x+11)/(x−1)) ; x≠1   If f(x)+8(f○g)(x)= 15−x , find  the value of f(13).

$$\mathrm{Given}\:\mathrm{g}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{x}+\mathrm{11}}{\mathrm{x}−\mathrm{1}}\:;\:\mathrm{x}\neq\mathrm{1}\: \\ $$$$\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)+\mathrm{8}\left(\mathrm{f}\circ\mathrm{g}\right)\left(\mathrm{x}\right)=\:\mathrm{15}−\mathrm{x}\:,\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{13}\right). \\ $$

Answered by EDWIN88 last updated on 04/Mar/21

first step , we must find the value of  { ((g(2))),((g(13))) :}  ⇔ { ((g(2)=((13)/1)=13)),((g(13)=((24)/(12))=2)) :}  second step   put x=2 ⇒ f(2)+8f(g(2))= 13                          f(2)+8f(13) = 13...(i)  put x=13⇒f(13)+8f(g(13))= 2                           f(13)+8f(2) = 2...(ii)  8×(i)−(ii)⇒ 63 f(13) = 102                               f(13) = ((102)/(63)) ≈1.62

$$\mathrm{first}\:\mathrm{step}\:,\:\mathrm{we}\:\mathrm{must}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\begin{cases}{\mathrm{g}\left(\mathrm{2}\right)}\\{\mathrm{g}\left(\mathrm{13}\right)}\end{cases} \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{g}\left(\mathrm{2}\right)=\frac{\mathrm{13}}{\mathrm{1}}=\mathrm{13}}\\{\mathrm{g}\left(\mathrm{13}\right)=\frac{\mathrm{24}}{\mathrm{12}}=\mathrm{2}}\end{cases} \\ $$$$\mathrm{second}\:\mathrm{step}\: \\ $$$$\mathrm{put}\:\mathrm{x}=\mathrm{2}\:\Rightarrow\:\mathrm{f}\left(\mathrm{2}\right)+\mathrm{8f}\left(\mathrm{g}\left(\mathrm{2}\right)\right)=\:\mathrm{13} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{2}\right)+\mathrm{8f}\left(\mathrm{13}\right)\:=\:\mathrm{13}...\left(\mathrm{i}\right) \\ $$$$\mathrm{put}\:\mathrm{x}=\mathrm{13}\Rightarrow\mathrm{f}\left(\mathrm{13}\right)+\mathrm{8f}\left(\mathrm{g}\left(\mathrm{13}\right)\right)=\:\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{13}\right)+\mathrm{8f}\left(\mathrm{2}\right)\:=\:\mathrm{2}...\left(\mathrm{ii}\right) \\ $$$$\mathrm{8}×\left(\mathrm{i}\right)−\left(\mathrm{ii}\right)\Rightarrow\:\mathrm{63}\:\mathrm{f}\left(\mathrm{13}\right)\:=\:\mathrm{102}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{13}\right)\:=\:\frac{\mathrm{102}}{\mathrm{63}}\:\approx\mathrm{1}.\mathrm{62}\: \\ $$

Answered by Ñï= last updated on 04/Mar/21

f(13)+8f(g(13))=15−13=2  g(13)=((24)/(12))=2  1)::f(13)+8f(2)=2  f(2)+8f(g(2))=15−2=13  g(2)=13  2)::f(2)+8f(13)=13  1)∧2)  ⇒f(13)=((34)/(21))

$${f}\left(\mathrm{13}\right)+\mathrm{8}{f}\left({g}\left(\mathrm{13}\right)\right)=\mathrm{15}−\mathrm{13}=\mathrm{2} \\ $$$${g}\left(\mathrm{13}\right)=\frac{\mathrm{24}}{\mathrm{12}}=\mathrm{2} \\ $$$$\left.\mathrm{1}\right)::{f}\left(\mathrm{13}\right)+\mathrm{8}{f}\left(\mathrm{2}\right)=\mathrm{2} \\ $$$${f}\left(\mathrm{2}\right)+\mathrm{8}{f}\left({g}\left(\mathrm{2}\right)\right)=\mathrm{15}−\mathrm{2}=\mathrm{13} \\ $$$${g}\left(\mathrm{2}\right)=\mathrm{13} \\ $$$$\left.\mathrm{2}\right)::{f}\left(\mathrm{2}\right)+\mathrm{8}{f}\left(\mathrm{13}\right)=\mathrm{13} \\ $$$$\left.\mathrm{1}\left.\right)\wedge\mathrm{2}\right) \\ $$$$\Rightarrow{f}\left(\mathrm{13}\right)=\frac{\mathrm{34}}{\mathrm{21}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com