Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 114066 by john santu last updated on 17/Sep/20

Given f(x)=7+cos 2x+2sin^2 x  find f^((10)) (x) ?

$${Given}\:{f}\left({x}\right)=\mathrm{7}+\mathrm{cos}\:\mathrm{2}{x}+\mathrm{2sin}\:^{\mathrm{2}} {x} \\ $$$${find}\:{f}^{\left(\mathrm{10}\right)} \left({x}\right)\:? \\ $$

Commented by bemath last updated on 17/Sep/20

f(x)=7+1−2sin^2 x+2sin^2 x  f(x)=8 ⇒f^((10)) (x)= 0

$${f}\left({x}\right)=\mathrm{7}+\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} {x}+\mathrm{2sin}\:^{\mathrm{2}} {x} \\ $$$${f}\left({x}\right)=\mathrm{8}\:\Rightarrow{f}\:^{\left(\mathrm{10}\right)} \left({x}\right)=\:\mathrm{0}\: \\ $$

Answered by Olaf last updated on 17/Sep/20

f(x) = 7+cos2x+2sin^2 x  f(x) = 7+cos2x+2((1−cos2x)/2)  f(x) = 8  f^((k)) (x) = 0

$${f}\left({x}\right)\:=\:\mathrm{7}+\mathrm{cos2}{x}+\mathrm{2sin}^{\mathrm{2}} {x} \\ $$$${f}\left({x}\right)\:=\:\mathrm{7}+\mathrm{cos2}{x}+\mathrm{2}\frac{\mathrm{1}−\mathrm{cos2}{x}}{\mathrm{2}} \\ $$$${f}\left({x}\right)\:=\:\mathrm{8} \\ $$$${f}^{\left({k}\right)} \left({x}\right)\:=\:\mathrm{0} \\ $$

Answered by 1549442205PVT last updated on 17/Sep/20

Since cos2x=1−2sin^2 x,cos2x+2sin^2 x  =1⇒f(x)=7+cos2x+2sin^2 x=8  ⇒f ′(x)=0⇒f^((n)) (x)=0∀n≥1,n∈N

$$\mathrm{Since}\:\mathrm{cos2x}=\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \mathrm{x},\mathrm{cos2x}+\mathrm{2sin}^{\mathrm{2}} \mathrm{x} \\ $$$$=\mathrm{1}\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{7}+\mathrm{cos2x}+\mathrm{2sin}^{\mathrm{2}} \mathrm{x}=\mathrm{8} \\ $$$$\Rightarrow\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{0}\Rightarrow\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)=\mathrm{0}\forall\mathrm{n}\geqslant\mathrm{1},\mathrm{n}\in\mathrm{N} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com