Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 114878 by bobhans last updated on 21/Sep/20

Given f(x) = ∫_0 ^x  (dt/( (√(1+t^3 )))) and g(x) be the  inverse function of f(x), then g ′′(x)=λg^2 (x).  then the value of λ =

$${Given}\:{f}\left({x}\right)\:=\:\underset{\mathrm{0}} {\overset{{x}} {\int}}\:\frac{{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{3}} }}\:{and}\:{g}\left({x}\right)\:{be}\:{the} \\ $$$${inverse}\:{function}\:{of}\:{f}\left({x}\right),\:{then}\:{g}\:''\left({x}\right)=\lambda{g}^{\mathrm{2}} \left({x}\right). \\ $$$${then}\:{the}\:{value}\:{of}\:\lambda\:= \\ $$

Answered by Olaf last updated on 21/Sep/20

gof(x) = x  f′(x)×g′of(x) = 1  g′of(x) = (1/(f′(x))) = (√(1+x^3 ))  f′(x)×g′′of(x) = ((3x^2 )/(2(√(1+x^3 ))))  g′′of(x) = (1/(f′(x)))[((3x^2 )/(2(√(1+x^3 ))))]  g′′of(x) = (√(1+x^3 ))[((3x^2 )/(2(√(1+x^3 ))))]  g′′of(x) = (3/2)x^2   g′′of(x) = (3/2)[gof(x)]^2   Let y = f(x)  g′′(y) = (3/2)g^2 (y)  g′′(y) = λg^2 (y) with λ = (3/2)

$${g}\mathrm{o}{f}\left({x}\right)\:=\:{x} \\ $$$${f}'\left({x}\right)×{g}'\mathrm{o}{f}\left({x}\right)\:=\:\mathrm{1} \\ $$$${g}'\mathrm{o}{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{f}'\left({x}\right)}\:=\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} } \\ $$$${f}'\left({x}\right)×{g}''\mathrm{o}{f}\left({x}\right)\:=\:\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }} \\ $$$${g}''\mathrm{o}{f}\left({x}\right)\:=\:\frac{\mathrm{1}}{{f}'\left({x}\right)}\left[\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}\right] \\ $$$${g}''\mathrm{o}{f}\left({x}\right)\:=\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }\left[\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}\right] \\ $$$${g}''\mathrm{o}{f}\left({x}\right)\:=\:\frac{\mathrm{3}}{\mathrm{2}}{x}^{\mathrm{2}} \\ $$$${g}''\mathrm{o}{f}\left({x}\right)\:=\:\frac{\mathrm{3}}{\mathrm{2}}\left[{g}\mathrm{o}{f}\left({x}\right)\right]^{\mathrm{2}} \\ $$$$\mathrm{Let}\:{y}\:=\:{f}\left({x}\right) \\ $$$${g}''\left({y}\right)\:=\:\frac{\mathrm{3}}{\mathrm{2}}{g}^{\mathrm{2}} \left({y}\right) \\ $$$${g}''\left({y}\right)\:=\:\lambda{g}^{\mathrm{2}} \left({y}\right)\:\mathrm{with}\:\lambda\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Answered by PRITHWISH SEN 2 last updated on 21/Sep/20

f^′ (x)= (1/( (√(1+x^3 ))))     now, g^′ (x)= (1/(f^′ {g(x)}))  g′(x)= (√(1+{g(x)}^3 ))  g^(′′) (x)= (1/(2(√(1+{g(x)}^3 )))) . 3g^2 (x).g^′ (x)    λg^2 (x) = (1/(2g′(x))).3g^2 (x).g^′ (x)    λ= (3/2)

$$\mathrm{f}^{'} \left(\mathrm{x}\right)=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }}\:\:\:\:\:\mathrm{now},\:\mathrm{g}^{'} \left(\mathrm{x}\right)=\:\frac{\mathrm{1}}{\mathrm{f}^{'} \left\{\mathrm{g}\left(\mathrm{x}\right)\right\}} \\ $$$$\mathrm{g}'\left(\mathrm{x}\right)=\:\sqrt{\mathrm{1}+\left\{\mathrm{g}\left(\mathrm{x}\right)\right\}^{\mathrm{3}} } \\ $$$$\mathrm{g}^{''} \left(\mathrm{x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{1}+\left\{\mathrm{g}\left(\mathrm{x}\right)\right\}^{\mathrm{3}} }}\:.\:\mathrm{3g}^{\mathrm{2}} \left(\mathrm{x}\right).\mathrm{g}^{'} \left(\mathrm{x}\right) \\ $$$$\:\:\lambda\boldsymbol{\mathrm{g}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{\mathrm{g}}'\left(\boldsymbol{\mathrm{x}}\right)}.\mathrm{3}\boldsymbol{\mathrm{g}}^{\mathrm{2}} \left(\boldsymbol{\mathrm{x}}\right).\boldsymbol{\mathrm{g}}^{'} \left(\boldsymbol{\mathrm{x}}\right) \\ $$$$\:\:\lambda=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com