Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 137811 by bramlexs22 last updated on 07/Apr/21

Given  { ((cos (x−y)=−1+(1/2)cos x)),((cos (x+y)= 1+(1/3)cos x)) :}  where 270° < y< 360° . find  sin 2y .

$${Given}\:\begin{cases}{\mathrm{cos}\:\left({x}−{y}\right)=−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:{x}}\\{\mathrm{cos}\:\left({x}+{y}\right)=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\mathrm{cos}\:{x}}\end{cases} \\ $$$${where}\:\mathrm{270}°\:<\:{y}<\:\mathrm{360}°\:.\:{find} \\ $$$$\mathrm{sin}\:\mathrm{2}{y}\:. \\ $$

Answered by EDWIN88 last updated on 07/Apr/21

⇔ cos (x−y)+cos (x+y)=(5/6)cos x  ⇔ 2cos x cos y = (5/6)cos x  ⇔ cos x [2cos y−(5/6) ]= 0     { ((cos y=(5/(12)))),((sin y=−(√(1−((25)/(144)))) =−((√(119))/(12)))) :}  then sin 2y = 2sin y cos y = −2[((5(√(119)))/(144)) ]  = −((5(√(119)))/(72)) .

$$\Leftrightarrow\:\mathrm{cos}\:\left({x}−{y}\right)+\mathrm{cos}\:\left({x}+{y}\right)=\frac{\mathrm{5}}{\mathrm{6}}\mathrm{cos}\:{x} \\ $$$$\Leftrightarrow\:\mathrm{2cos}\:{x}\:\mathrm{cos}\:{y}\:=\:\frac{\mathrm{5}}{\mathrm{6}}\mathrm{cos}\:{x} \\ $$$$\Leftrightarrow\:\mathrm{cos}\:{x}\:\left[\mathrm{2cos}\:{y}−\frac{\mathrm{5}}{\mathrm{6}}\:\right]=\:\mathrm{0} \\ $$$$ \:\begin{cases}{\mathrm{cos}\:{y}=\frac{\mathrm{5}}{\mathrm{12}}}\\{\mathrm{sin}\:{y}=−\sqrt{\mathrm{1}−\frac{\mathrm{25}}{\mathrm{144}}}\:=−\frac{\sqrt{\mathrm{119}}}{\mathrm{12}}}\end{cases} \\ $$$${then}\:\mathrm{sin}\:\mathrm{2}{y}\:=\:\mathrm{2sin}\:{y}\:\mathrm{cos}\:{y}\:=\:−\mathrm{2}\left[\frac{\mathrm{5}\sqrt{\mathrm{119}}}{\mathrm{144}}\:\right] \\ $$$$=\:−\frac{\mathrm{5}\sqrt{\mathrm{119}}}{\mathrm{72}}\:. \\ $$

Answered by mr W last updated on 07/Apr/21

cos (x−y)+cos (x+y)=(5/6) cos x  cos x cos y=(5/(12)) cos x  cos x (cos y−(5/(12)))=0  ⇒cos x=0 or  ⇒cos y=(5/(12))    with cos x=0:  sin x=±1  cos (x−y)=−1+(1/2)cos x  sin x sin y=−1  ⇒sin y=−(1/(sin x))=±1  ⇒no solution for y∈(270°,360°)    with cos y=(5/(12)):  sin y=−((√(12^2 −5^2 ))/(12))=−((√(119))/(12))  sin 2y=−2×(5/(12))×((√(119))/(12))=−((5(√(119)))/(72))

$$\mathrm{cos}\:\left({x}−{y}\right)+\mathrm{cos}\:\left({x}+{y}\right)=\frac{\mathrm{5}}{\mathrm{6}}\:\mathrm{cos}\:{x} \\ $$$$\mathrm{cos}\:{x}\:\mathrm{cos}\:{y}=\frac{\mathrm{5}}{\mathrm{12}}\:\mathrm{cos}\:{x} \\ $$$$\mathrm{cos}\:{x}\:\left(\mathrm{cos}\:{y}−\frac{\mathrm{5}}{\mathrm{12}}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:{x}=\mathrm{0}\:{or} \\ $$$$\Rightarrow\mathrm{cos}\:{y}=\frac{\mathrm{5}}{\mathrm{12}} \\ $$$$ \\ $$$${with}\:\mathrm{cos}\:{x}=\mathrm{0}: \\ $$$$\mathrm{sin}\:{x}=\pm\mathrm{1} \\ $$$$\mathrm{cos}\:\left({x}−{y}\right)=−\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:{x} \\ $$$$\mathrm{sin}\:{x}\:\mathrm{sin}\:{y}=−\mathrm{1} \\ $$$$\Rightarrow\mathrm{sin}\:{y}=−\frac{\mathrm{1}}{\mathrm{sin}\:{x}}=\pm\mathrm{1} \\ $$$$\Rightarrow{no}\:{solution}\:{for}\:{y}\in\left(\mathrm{270}°,\mathrm{360}°\right) \\ $$$$ \\ $$$${with}\:\mathrm{cos}\:{y}=\frac{\mathrm{5}}{\mathrm{12}}: \\ $$$$\mathrm{sin}\:{y}=−\frac{\sqrt{\mathrm{12}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }}{\mathrm{12}}=−\frac{\sqrt{\mathrm{119}}}{\mathrm{12}} \\ $$$$\mathrm{sin}\:\mathrm{2}{y}=−\mathrm{2}×\frac{\mathrm{5}}{\mathrm{12}}×\frac{\sqrt{\mathrm{119}}}{\mathrm{12}}=−\frac{\mathrm{5}\sqrt{\mathrm{119}}}{\mathrm{72}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com