Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 22080 by Tinkutara last updated on 10/Oct/17

Given any positive integer n show  that there are two positive rational  numbers a and b, a ≠ b, which are not  integers and which are such that a − b,  a^2  − b^2 , a^3  − b^3 , ....., a^n  − b^n  are all  integers.

$$\mathrm{Given}\:\mathrm{any}\:\mathrm{positive}\:\mathrm{integer}\:{n}\:\mathrm{show} \\ $$$$\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{rational} \\ $$$$\mathrm{numbers}\:{a}\:\mathrm{and}\:{b},\:{a}\:\neq\:{b},\:\mathrm{which}\:\mathrm{are}\:\mathrm{not} \\ $$$$\mathrm{integers}\:\mathrm{and}\:\mathrm{which}\:\mathrm{are}\:\mathrm{such}\:\mathrm{that}\:{a}\:−\:{b}, \\ $$$${a}^{\mathrm{2}} \:−\:{b}^{\mathrm{2}} ,\:{a}^{\mathrm{3}} \:−\:{b}^{\mathrm{3}} ,\:.....,\:{a}^{{n}} \:−\:{b}^{{n}} \:\mathrm{are}\:\mathrm{all} \\ $$$$\mathrm{integers}. \\ $$

Commented by Rasheed.Sindhi last updated on 11/Oct/17

For n=2   a−b,a^2 −b^2 ∈Z ⇒ a+b ∈Z    [∵ a^2 −b^2 =(a−b)(a+b)]  (7/2)−(1/2)=3  ((7/2))^2 −((1/2))^2 =((49)/4)−(1/4)=12  a−b,a+b∈Z⇒a^2 −b^2 ∈Z ;a,b∈Q  For n=3  a−b∈Z  a^2 −b^2 =(a−b)(a+b)∈Z   ⇒a+b∈Z  a^3 −b^3 =(a−b)(a^2 +ab+b^2 )∈Z     ⇒a^2 +ab+b^2 ∈Z  ⋮

$$\mathrm{For}\:\mathrm{n}=\mathrm{2} \\ $$$$\:{a}−{b},{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \in\mathbb{Z}\:\Rightarrow\:{a}+{b}\:\in\mathbb{Z} \\ $$$$\:\:\left[\because\:{a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\left({a}−{b}\right)\left({a}+{b}\right)\right] \\ $$$$\frac{\mathrm{7}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{3} \\ $$$$\left(\frac{\mathrm{7}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{49}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{12} \\ $$$${a}−{b},{a}+{b}\in\mathbb{Z}\Rightarrow{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \in\mathbb{Z}\:;{a},{b}\in\mathbb{Q} \\ $$$$\mathrm{For}\:\mathrm{n}=\mathrm{3} \\ $$$${a}−{b}\in\mathbb{Z} \\ $$$${a}^{\mathrm{2}} −{b}^{\mathrm{2}} =\left({a}−{b}\right)\left({a}+{b}\right)\in\mathbb{Z} \\ $$$$\:\Rightarrow{a}+{b}\in\mathbb{Z} \\ $$$${a}^{\mathrm{3}} −{b}^{\mathrm{3}} =\left({a}−{b}\right)\left({a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \right)\in\mathbb{Z} \\ $$$$\:\:\:\Rightarrow{a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} \in\mathbb{Z} \\ $$$$\vdots \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com