Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 153458 by liberty last updated on 07/Sep/21

Given a set consisting of 22 integer   A={±a_1 ,±a_2 ,...,±a_(11) }. Show that  exist subset of S with properties  (1) for every i=1,2,3,...,11    have least one between a_i  or −a_i    element of S  (2)the sum all possible numbers  in S divisible by 2015

$${Given}\:{a}\:{set}\:{consisting}\:{of}\:\mathrm{22}\:{integer} \\ $$$$\:{A}=\left\{\pm{a}_{\mathrm{1}} ,\pm{a}_{\mathrm{2}} ,...,\pm{a}_{\mathrm{11}} \right\}.\:{Show}\:{that} \\ $$$${exist}\:{subset}\:{of}\:{S}\:{with}\:{properties} \\ $$$$\left(\mathrm{1}\right)\:{for}\:{every}\:{i}=\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{11}\: \\ $$$$\:{have}\:{least}\:{one}\:{between}\:{a}_{{i}} \:{or}\:−{a}_{{i}} \\ $$$$\:{element}\:{of}\:{S} \\ $$$$\left(\mathrm{2}\right){the}\:{sum}\:{all}\:{possible}\:{numbers} \\ $$$${in}\:{S}\:{divisible}\:{by}\:\mathrm{2015} \\ $$

Commented by talminator2856791 last updated on 07/Sep/21

 please phrase the question better.

$$\:\mathrm{please}\:\mathrm{phrase}\:\mathrm{the}\:\mathrm{question}\:\mathrm{better}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com