Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 3055 by Filup last updated on 04/Dec/15

Given a set  S={a_1 , ..., a_n }  a_k ∈Z    a_1 =a,   a_n =a_(n−1) +1,   a_n =b    ∴S contains all integers between  a and b.    Are there more even or odd values?

$$\mathrm{Given}\:\mathrm{a}\:\mathrm{set}\:\:{S}=\left\{{a}_{\mathrm{1}} ,\:...,\:{a}_{{n}} \right\} \\ $$$${a}_{{k}} \in\mathbb{Z} \\ $$$$ \\ $$$${a}_{\mathrm{1}} ={a},\:\:\:{a}_{{n}} ={a}_{{n}−\mathrm{1}} +\mathrm{1},\:\:\:{a}_{{n}} ={b} \\ $$$$ \\ $$$$\therefore{S}\:\mathrm{contains}\:\mathrm{all}\:\mathrm{integers}\:\mathrm{between} \\ $$$${a}\:\mathrm{and}\:{b}. \\ $$$$ \\ $$$$\mathrm{Are}\:\mathrm{there}\:\mathrm{more}\:\mathrm{even}\:\mathrm{or}\:\mathrm{odd}\:\mathrm{values}? \\ $$

Answered by 123456 last updated on 04/Dec/15

a_1 =a  a_n =a_(n−1) +1  a_n =b   (b≥a)  a_1 =a  a_2 =a+1  ⋮  a_n =b=a+(b−a)  n=b−a+1  if n=b−a+1≡0(mod 2)⇒b−a≡1(mod 2)  a_1 ≡a_3 ≡a_5 ≡...≡a_(n−1)   a_2 ≡a_4 ≡a_6 ≡...≡a_n   so there same quantity of even and odd  if n=b−a+1≡1(mod 2)⇒b−a≡0(mod 2)  a_1 ≡a_3 ≡...≡a_(n−2) ≡a_n   a_2 ≡a_4 ≡...≡a_(n−1)   so its not have same quantinty, also  a_1  determines wich will have more  wich mean  there more numbers of parity of a_1

$${a}_{\mathrm{1}} ={a} \\ $$$${a}_{{n}} ={a}_{{n}−\mathrm{1}} +\mathrm{1} \\ $$$${a}_{{n}} ={b}\:\:\:\left({b}\geqslant{a}\right) \\ $$$${a}_{\mathrm{1}} ={a} \\ $$$${a}_{\mathrm{2}} ={a}+\mathrm{1} \\ $$$$\vdots \\ $$$${a}_{{n}} ={b}={a}+\left({b}−{a}\right) \\ $$$${n}={b}−{a}+\mathrm{1} \\ $$$$\mathrm{if}\:{n}={b}−{a}+\mathrm{1}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right)\Rightarrow{b}−{a}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$${a}_{\mathrm{1}} \equiv{a}_{\mathrm{3}} \equiv{a}_{\mathrm{5}} \equiv...\equiv{a}_{{n}−\mathrm{1}} \\ $$$${a}_{\mathrm{2}} \equiv{a}_{\mathrm{4}} \equiv{a}_{\mathrm{6}} \equiv...\equiv{a}_{{n}} \\ $$$$\mathrm{so}\:\mathrm{there}\:\mathrm{same}\:\mathrm{quantity}\:\mathrm{of}\:\mathrm{even}\:\mathrm{and}\:\mathrm{odd} \\ $$$$\mathrm{if}\:{n}={b}−{a}+\mathrm{1}\equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{2}\right)\Rightarrow{b}−{a}\equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{2}\right) \\ $$$${a}_{\mathrm{1}} \equiv{a}_{\mathrm{3}} \equiv...\equiv{a}_{{n}−\mathrm{2}} \equiv{a}_{{n}} \\ $$$${a}_{\mathrm{2}} \equiv{a}_{\mathrm{4}} \equiv...\equiv{a}_{{n}−\mathrm{1}} \\ $$$$\mathrm{so}\:\mathrm{its}\:\mathrm{not}\:\mathrm{have}\:\mathrm{same}\:\mathrm{quantinty},\:\mathrm{also} \\ $$$${a}_{\mathrm{1}} \:\mathrm{determines}\:\mathrm{wich}\:\mathrm{will}\:\mathrm{have}\:\mathrm{more} \\ $$$$\mathrm{wich}\:\mathrm{mean} \\ $$$$\mathrm{there}\:\mathrm{more}\:\mathrm{numbers}\:\mathrm{of}\:\mathrm{parity}\:\mathrm{of}\:{a}_{\mathrm{1}} \\ $$

Answered by Rasheed Soomro last updated on 04/Dec/15

Case−1:a,b∈E  More even numbers  Case−2: a,b∈O  More odd numbers  Case−3: One of a and b is odd other is even  Both are equal

$${Case}−\mathrm{1}:{a},{b}\in\mathbb{E} \\ $$$${More}\:{even}\:{numbers} \\ $$$${Case}−\mathrm{2}:\:{a},{b}\in\mathbb{O} \\ $$$${More}\:{odd}\:{numbers} \\ $$$${Case}−\mathrm{3}:\:{One}\:{of}\:{a}\:{and}\:{b}\:{is}\:{odd}\:{other}\:{is}\:{even} \\ $$$${Both}\:{are}\:{equal} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com