Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 605 by magmarsenpai last updated on 10/Feb/15

Given a matrix A ∈ M_(n × n )  ∀  k ∈ N define:  A= { ((∅_n              if A=∅  and  k≥1)),((I_n               if A≠∅_n  and k≠0)),((A^(k−1) A    if A≠∅_n  and k≥1)) :}  Prove that A^k A^r =A^(k+r)  ∀ k,r ∈ N.

$${Given}\:{a}\:{matrix}\:{A}\:\in\:\mathbb{M}_{{n}\:×\:{n}\:} \:\forall\:\:{k}\:\in\:\mathbb{N}\:{define}: \\ $$$${A}=\begin{cases}{\varnothing_{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:{A}=\varnothing\:\:{and}\:\:{k}\geqslant\mathrm{1}}\\{{I}_{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:{A}\neq\varnothing_{{n}} \:{and}\:{k}\neq\mathrm{0}}\\{{A}^{{k}−\mathrm{1}} {A}\:\:\:\:{if}\:{A}\neq\varnothing_{{n}} \:{and}\:{k}\geqslant\mathrm{1}}\end{cases} \\ $$$${Prove}\:{that}\:{A}^{{k}} {A}^{{r}} ={A}^{{k}+{r}} \:\forall\:{k},{r}\:\in\:\mathbb{N}. \\ $$

Commented by prakash jain last updated on 09/Feb/15

Question:  k, r∈R or k,r∈N?  A= { ((∅_n              if A=∅  and  k≥1)),((I_n               if A≠∅_n  and k≠0    check if k=0.)),((A^(k−1) A    if A≠∅_n  and k≥1)) :}  The definition in line 2 contradicts with  definition in line 3.  If k , r are real then A^k  needs to be defined  for k<0. A^(0.5) =A^(−0.5) A=undefined  If k, r are postive integers including 0.  The result follows from   property of matrix muliplication.  A^r =A∙A∙A...(r times)  A^k =A∙A∙A ...(k times)

$$\mathrm{Question}:\:\:{k},\:{r}\in\mathbb{R}\:\mathrm{or}\:{k},{r}\in\mathbb{N}? \\ $$$${A}=\begin{cases}{\varnothing_{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:{A}=\varnothing\:\:{and}\:\:{k}\geqslant\mathrm{1}}\\{{I}_{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:{A}\neq\varnothing_{{n}} \:{and}\:{k}\neq\mathrm{0}\:\:\:\:\mathrm{check}\:\mathrm{if}\:{k}=\mathrm{0}.}\\{{A}^{{k}−\mathrm{1}} {A}\:\:\:\:{if}\:{A}\neq\varnothing_{{n}} \:{and}\:{k}\geqslant\mathrm{1}}\end{cases} \\ $$$$\mathrm{The}\:\mathrm{definition}\:\mathrm{in}\:\mathrm{line}\:\mathrm{2}\:\mathrm{contradicts}\:\mathrm{with} \\ $$$$\mathrm{definition}\:\mathrm{in}\:\mathrm{line}\:\mathrm{3}. \\ $$$$\mathrm{If}\:{k}\:,\:{r}\:\mathrm{are}\:\mathrm{real}\:\mathrm{then}\:{A}^{{k}} \:\mathrm{needs}\:\mathrm{to}\:\mathrm{be}\:\mathrm{defined} \\ $$$$\mathrm{for}\:{k}<\mathrm{0}.\:{A}^{\mathrm{0}.\mathrm{5}} ={A}^{−\mathrm{0}.\mathrm{5}} {A}=\mathrm{undefined} \\ $$$$\mathrm{If}\:{k},\:{r}\:\mathrm{are}\:\mathrm{postive}\:\mathrm{integers}\:\mathrm{including}\:\mathrm{0}. \\ $$$$\mathrm{The}\:\mathrm{result}\:\mathrm{follows}\:\mathrm{from}\: \\ $$$$\mathrm{property}\:\mathrm{of}\:\mathrm{matrix}\:\mathrm{muliplication}. \\ $$$${A}^{{r}} ={A}\centerdot{A}\centerdot{A}...\left({r}\:\mathrm{times}\right) \\ $$$${A}^{{k}} ={A}\centerdot{A}\centerdot{A}\:...\left({k}\:\mathrm{times}\right) \\ $$

Answered by magmarsenpai last updated on 09/Feb/15

is true for k,r ∈ N

$${is}\:{true}\:{for}\:{k},{r}\:\in\:\mathbb{N} \\ $$

Answered by magmarsenpai last updated on 09/Feb/15

 I  solved so :  we know :  A^k =AA..A (k times)  A^r =AA..A (r times)  Either: A=(a_(i j) )_(n ×n)  ∀ i,j∈{1,...,n}   A^k A^r =C=(c_(i j) )_(n x n)   we have:  c_(i j) =Σ_(j=1) ^n [(a_(i j) )(a_(i j) )..(a_(i j) )][(a_(i j) )(a_(i j) )..(a_(i j) )]  c_(i j) =Σ_(j=1) ^n (a_(i j) )^k (a_(i j) )^r =Σ_(j=1) ^n (a_(i j) )^(k+r)   ∴ A^k A^r =A^(k+r)  , will be well ?

$$\:{I}\:\:{solved}\:{so}\:: \\ $$$${we}\:{know}\:: \\ $$$${A}^{{k}} ={AA}..{A}\:\left({k}\:{times}\right) \\ $$$${A}^{{r}} ={AA}..{A}\:\left({r}\:{times}\right) \\ $$$${Either}:\:{A}=\left({a}_{{i}\:{j}} \right)_{{n}\:×{n}} \:\forall\:{i},{j}\in\left\{\mathrm{1},...,{n}\right\} \\ $$$$\:{A}^{{k}} {A}^{{r}} ={C}=\left({c}_{{i}\:{j}} \right)_{{n}\:{x}\:{n}} \\ $$$${we}\:{have}: \\ $$$${c}_{{i}\:{j}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\left({a}_{{i}\:{j}} \right)\left({a}_{{i}\:{j}} \right)..\left({a}_{{i}\:{j}} \right)\right]\left[\left({a}_{{i}\:{j}} \right)\left({a}_{{i}\:{j}} \right)..\left({a}_{{i}\:{j}} \right)\right] \\ $$$${c}_{{i}\:{j}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left({a}_{{i}\:{j}} \right)^{{k}} \left({a}_{{i}\:{j}} \right)^{{r}} =\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\left({a}_{{i}\:{j}} \right)^{{k}+{r}} \\ $$$$\therefore\:{A}^{{k}} {A}^{{r}} ={A}^{{k}+{r}} \:,\:{will}\:{be}\:{well}\:? \\ $$

Answered by prakash jain last updated on 10/Feb/15

Matrix multiplication is associative  A∙A∙A=(A∙A)∙A=A∙(A∙A)  A∙A∙A  (k+r times)=(A∙A∙A k times)∙(A∙A∙A r times)  or  A^(k+r) =A^k ∙A^r

$$\mathrm{Matrix}\:\mathrm{multiplication}\:\mathrm{is}\:\mathrm{associative} \\ $$$${A}\centerdot{A}\centerdot{A}=\left({A}\centerdot{A}\right)\centerdot{A}={A}\centerdot\left({A}\centerdot{A}\right) \\ $$$${A}\centerdot{A}\centerdot{A}\:\:\left({k}+{r}\:{times}\right)=\left({A}\centerdot{A}\centerdot{A}\:{k}\:{times}\right)\centerdot\left({A}\centerdot{A}\centerdot{A}\:{r}\:{times}\right) \\ $$$$\mathrm{or} \\ $$$${A}^{{k}+{r}} ={A}^{{k}} \centerdot{A}^{{r}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com