Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 114181 by bemath last updated on 17/Sep/20

Given a function   f(x) = x^2 +(1/x^2 )+4x+(4/x) ; where x>0.  find the minimum value of f(x)

$${Given}\:{a}\:{function}\: \\ $$$${f}\left({x}\right)\:=\:{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }+\mathrm{4}{x}+\frac{\mathrm{4}}{{x}}\:;\:{where}\:{x}>\mathrm{0}. \\ $$$${find}\:{the}\:{minimum}\:{value}\:{of}\:{f}\left({x}\right) \\ $$

Answered by bobhans last updated on 17/Sep/20

recall p+(1/p) ≥ 2 ; p > 0  now f(x)= (x^2 +(1/x^2 ))+4(x+(1/x))  ⇒f(x)= (x+(1/x))^2 −2+4(x+(1/x))  f(x)∣_(minimum)  = 2^2 −2+4.2 = 10.

$${recall}\:{p}+\frac{\mathrm{1}}{{p}}\:\geqslant\:\mathrm{2}\:;\:{p}\:>\:\mathrm{0} \\ $$$${now}\:{f}\left({x}\right)=\:\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)+\mathrm{4}\left({x}+\frac{\mathrm{1}}{{x}}\right) \\ $$$$\Rightarrow{f}\left({x}\right)=\:\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{2}+\mathrm{4}\left({x}+\frac{\mathrm{1}}{{x}}\right) \\ $$$${f}\left({x}\right)\mid_{{minimum}} \:=\:\mathrm{2}^{\mathrm{2}} −\mathrm{2}+\mathrm{4}.\mathrm{2}\:=\:\mathrm{10}. \\ $$

Answered by mathmax by abdo last updated on 17/Sep/20

x^(2 )  +(1/x^2 ) ≥2  and x+(1/x) ≥2 ⇒4(x+(1/x))≥8 ⇒x^2  +(1/x^2 ) +4(x+(1/x))≥10 ⇒  min_R^+  f(x) =10

$$\mathrm{x}^{\mathrm{2}\:} \:+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:\geqslant\mathrm{2}\:\:\mathrm{and}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\:\geqslant\mathrm{2}\:\Rightarrow\mathrm{4}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)\geqslant\mathrm{8}\:\Rightarrow\mathrm{x}^{\mathrm{2}} \:+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:+\mathrm{4}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right)\geqslant\mathrm{10}\:\Rightarrow \\ $$$$\mathrm{min}_{\mathrm{R}^{+} } \mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{10} \\ $$

Answered by 1549442205PVT last updated on 18/Sep/20

f(x)=x^2 +(1/x^2 )+4(x+(1/x))  =(x−(1/x))^2 +4((√x)−(1/( (√x))))^2 +10≥10  The equality ocurrs if and only if  x=1.Hence,f(x)_(min) =10 when x=2

$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }+\mathrm{4}\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{x}}\right) \\ $$$$=\left(\mathrm{x}−\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{2}} +\mathrm{4}\left(\sqrt{\mathrm{x}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}}}\right)^{\mathrm{2}} +\mathrm{10}\geqslant\mathrm{10} \\ $$$$\mathrm{The}\:\mathrm{equality}\:\mathrm{ocurrs}\:\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if} \\ $$$$\mathrm{x}=\mathrm{1}.\mathrm{Hence},\mathrm{f}\left(\mathrm{x}\right)_{\mathrm{min}} =\mathrm{10}\:\mathrm{when}\:\mathrm{x}=\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com