Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 125099 by bramlexs22 last updated on 08/Dec/20

 Given a function f(x) = ((2ax^2 −x^3 ))^(1/3) .  Find the inclined asymptotes

$$\:{Given}\:{a}\:{function}\:{f}\left({x}\right)\:=\:\sqrt[{\mathrm{3}}]{\mathrm{2}{ax}^{\mathrm{2}} −{x}^{\mathrm{3}} }. \\ $$$${Find}\:{the}\:{inclined}\:{asymptotes} \\ $$

Answered by liberty last updated on 08/Dec/20

 k = lim_(x→±∞)  (y/x) = lim_(x→±∞) (((2ax^2 −x^3 ))^(1/3) /x)       lim_(x→±∞)  ((((2a)/x)−1))^(1/3)  = −1   b =lim_(x→±∞)  [y−kx ] = lim_(x→±∞) [ ((2ax^2 −x^3  ))^(1/3)  + x ]    = lim_(x→±∞)  ((2ax^2 −x^3 +x^3 )/( (((2ax^2 −x^3 )^2 ))^(1/3) −x ((2ax^2 −x^3 ))^(1/3)  +x^2 ))    = lim_(x→±∞) ((2ax^2 )/( (((2ax^2 −x^3 )^2 ))^(1/3) −x ((2ax^2 −x^3 ))^(1/3) +x^2 )) = ((2a)/3)  thus the straight line y=−x+((2a)/3) is a inclined  asymptotes to the curve y =((2ax^2 −x^3 ))^(1/3)  .

$$\:{k}\:=\:\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\:\frac{{y}}{{x}}\:=\:\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}{ax}^{\mathrm{2}} −{x}^{\mathrm{3}} }}{{x}}\: \\ $$$$\:\:\:\:\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{3}}]{\frac{\mathrm{2}{a}}{{x}}−\mathrm{1}}\:=\:−\mathrm{1} \\ $$$$\:{b}\:=\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\:\left[{y}−{kx}\:\right]\:=\:\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\left[\:\sqrt[{\mathrm{3}}]{\mathrm{2}{ax}^{\mathrm{2}} −{x}^{\mathrm{3}} \:}\:+\:{x}\:\right] \\ $$$$\:\:=\:\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\:\frac{\mathrm{2}{ax}^{\mathrm{2}} −{x}^{\mathrm{3}} +{x}^{\mathrm{3}} }{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{2}{ax}^{\mathrm{2}} −{x}^{\mathrm{3}} \right)^{\mathrm{2}} }−{x}\:\sqrt[{\mathrm{3}}]{\mathrm{2}{ax}^{\mathrm{2}} −{x}^{\mathrm{3}} }\:+{x}^{\mathrm{2}} } \\ $$$$\:\:=\:\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\frac{\mathrm{2}{ax}^{\mathrm{2}} }{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{2}{ax}^{\mathrm{2}} −{x}^{\mathrm{3}} \right)^{\mathrm{2}} }−{x}\:\sqrt[{\mathrm{3}}]{\mathrm{2}{ax}^{\mathrm{2}} −{x}^{\mathrm{3}} }+{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}{a}}{\mathrm{3}} \\ $$$${thus}\:{the}\:{straight}\:{line}\:{y}=−{x}+\frac{\mathrm{2}{a}}{\mathrm{3}}\:{is}\:{a}\:{inclined} \\ $$$${asymptotes}\:{to}\:{the}\:{curve}\:{y}\:=\sqrt[{\mathrm{3}}]{\mathrm{2}{ax}^{\mathrm{2}} −{x}^{\mathrm{3}} }\:. \\ $$

Commented by bramlexs22 last updated on 08/Dec/20

thanks a lot

$${thanks}\:{a}\:{lot}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com