Question Number 217769 by nECxx2 last updated on 20/Mar/25 | ||
![]() | ||
$${Given}\:{a}\:{consumer}\:{with}\:{the}\:{utility} \\ $$$${function}\:{U}\:=\:{X}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{4}}} +\:{X}_{\mathrm{2}} \:{who}\:{faces} \\ $$$${a}\:{budget}\:{constraint}\:{of}\:{B}={P}_{\mathrm{1}} {X}_{\mathrm{1}} {P}_{\mathrm{2}} {X}_{\mathrm{2}} \\ $$$${Show}\:{that}\:{the}\:{expemditure}\:{function} \\ $$$${facing}\:{the}\:{consumer}\:{is} \\ $$$${B}\:=\:\mathrm{2}{P}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {P}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {U}^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$ | ||
Commented by nECxx2 last updated on 20/Mar/25 | ||
![]() | ||
$${Please}\:{help} \\ $$ | ||
Answered by MrGaster last updated on 21/Mar/25 | ||
![]() | ||
$$\mathcal{L}={X}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{4}}} +{X}_{\mathrm{2}} +\lambda\left({B}−{P}_{\mathrm{1}} {X}_{\mathrm{1}} −{P}_{\mathrm{2}} {X}_{\mathrm{2}} \right) \\ $$$$\frac{\partial\mathcal{L}}{\partial{X}_{\mathrm{1}} }=\frac{\mathrm{1}}{\mathrm{4}}{X}_{\mathrm{1}} ^{−\frac{\mathrm{3}}{\mathrm{4}}} −\lambda{P}_{\mathrm{1}} =\mathrm{0}\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{4}{P}_{\mathrm{1}} }{X}_{\mathrm{1}} ^{−\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$\frac{\partial\mathcal{L}}{\partial{X}_{\mathrm{2}} }=\mathrm{1}−\lambda{P}_{\mathrm{2}} =\mathrm{0}\Rightarrow\lambda=\frac{\mathrm{1}}{{P}_{\mathrm{2}} } \\ $$$$\frac{\partial\mathcal{L}}{\partial\lambda}={B}−{P}_{\mathrm{1}} {X}_{\mathrm{1}} −{P}_{\mathrm{2}} {X}_{\mathrm{2}} =\mathrm{0} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}{P}_{\mathrm{1}} }{X}^{−\frac{\mathrm{3}}{\mathrm{4}}} =\frac{\mathrm{1}}{{P}_{\mathrm{2}} }\Rightarrow{X}_{\mathrm{1}} ^{−\frac{\mathrm{3}}{\mathrm{4}}} =\mathrm{4}\frac{{P}_{\mathrm{1}} }{{P}_{\mathrm{2}} } \\ $$$${X}_{\mathrm{1}} =\left(\mathrm{4}\frac{{P}_{\mathrm{1}} }{{P}_{\mathrm{2}} }\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$${B}={P}_{\mathrm{1}} \left(\mathrm{4}\frac{{P}_{\mathrm{1}} }{{P}_{\mathrm{2}} }\right)^{\frac{\mathrm{4}}{\mathrm{3}}} +{P}_{\mathrm{2}} {X}_{\mathrm{2}} \\ $$$${X}_{\mathrm{2}} =\frac{{B}−{P}_{\mathrm{1}} \left(\mathrm{4}\frac{{P}_{\mathrm{1}} }{{P}_{\mathrm{2}} }\right)^{−\frac{\mathrm{4}}{\mathrm{3}}} }{{P}_{\mathrm{2}} } \\ $$$${U}={X}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{4}}} +{X}_{\mathrm{2}} \\ $$$${X}_{\mathrm{1}} \overset{{U}={X}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{4}}} +{X}_{\mathrm{2}} } {\&}{X}_{\mathrm{2}} \overset{\: } {\Rightarrow}{U}=\left(\left(\mathrm{4}\frac{{P}_{\mathrm{1}} }{{P}_{\mathrm{2}} }\right)^{−\frac{\mathrm{4}}{\mathrm{3}}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} +\frac{{B}−{P}_{\mathrm{1}} \left(\mathrm{4}\frac{{P}_{\mathrm{1}} }{{P}_{\mathrm{2}} }\right)^{−\frac{\mathrm{4}}{\mathrm{3}}} }{{P}_{\mathrm{2}} } \\ $$$${U}=\left(\mathrm{4}\frac{{P}_{\mathrm{1}} }{{P}_{\mathrm{2}} }\right)^{−\frac{\mathrm{1}}{\mathrm{3}}} +\frac{{B}−{P}_{\mathrm{1}} \left(\mathrm{4}\frac{{P}_{\mathrm{1}} }{{P}_{\mathrm{2}} }\right)^{−\frac{\mathrm{4}}{\mathrm{3}}} }{{P}_{\mathrm{2}} } \\ $$$${B}={P}_{\mathrm{2}} {U}+{P}_{\mathrm{1}} \left(\mathrm{4}\frac{{P}_{\mathrm{1}} }{{P}_{\mathrm{2}} }\right)^{−\frac{\mathrm{4}}{\mathrm{3}}} −{P}_{\mathrm{2}} \left(\mathrm{4}\frac{{P}_{\mathrm{1}} }{{P}_{\mathrm{2}} }\right)^{−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${B}={P}_{\mathrm{2}} {U}+{P}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{3}}} {P}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \mathrm{4}^{−\frac{\mathrm{4}}{\mathrm{3}}} −{P}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{3}}} {P}_{\mathrm{2}} ^{\frac{\mathrm{2}}{\mathrm{3}}} \mathrm{4}^{−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${B}={P}_{\mathrm{2}} {U}+{P}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{3}}} {P}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \left(\mathrm{4}^{−\frac{\mathrm{4}}{\mathrm{3}}} −\mathrm{4}^{\frac{\mathrm{1}}{\mathrm{3}}} \right) \\ $$$${B}={P}_{\mathrm{2}} {U}+{P}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{3}}} {P}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{3}}} =\left(\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${B}={P}_{\mathrm{2}} {U}−\frac{\mathrm{3}}{\mathrm{8}}{P}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{3}}} {P}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$${B}={P}_{\mathrm{2}} {U}−\frac{\mathrm{3}}{\mathrm{8}}\left({P}_{\mathrm{1}} {P}_{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\begin{array}{|c|}{{B}=\mathrm{2}{P}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {P}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {U}^{\frac{\mathrm{1}}{\mathrm{2}}} }\\\hline\end{array} \\ $$ | ||
Commented by nECxx2 last updated on 21/Mar/25 | ||
![]() | ||
$${Thank}\:{you}\:{so}\:{much} \\ $$ | ||
Commented by nECxx2 last updated on 21/Mar/25 | ||
![]() | ||
$${What}\:{was}\:{the}\:{reason}\:{for}\:{the}\:{equation} \\ $$$${at}\:{the}\:{first}\:{line}? \\ $$ | ||
Commented by nECxx2 last updated on 21/Mar/25 | ||
![]() | ||
$${Also}\:{you}\:{solved}\:{as}\:{though}\:{there}'{s}\:{a} \\ $$$$+\:{sign}\:{in}\:{the}\:{equation} \\ $$$${B}\:=\:{P}_{\mathrm{1}} {X}_{\mathrm{1}} {P}_{\mathrm{2}} {X}_{\mathrm{2}} \\ $$$${now}\:{as}\:{B}={P}_{\mathrm{1}} {X}_{\mathrm{1}} +{P}_{\mathrm{2}} {X}_{\mathrm{2}} \\ $$$${This}\:{solves}\:{it}\:{yet}\:{I}'{ll}\:{like}\:{to} \\ $$$${understand}\:{why} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$ | ||
Commented by nECxx2 last updated on 21/Mar/25 | ||
![]() | ||
$${After}\:{going}\:{through}\:{it}\:{again}\:{I}\:{have} \\ $$$${even}\:{more}\:{questions}.\:{Hiw}\:{come} \\ $$$${line}\:\mathrm{13}? \\ $$$${Please},\:{I}\:{only}\:{need}\:{clarity}\:{as}\:{I}\:{am} \\ $$$${a}\:{learner}.\:{Thank}\:{you}. \\ $$ | ||