Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 132463 by EDWIN88 last updated on 14/Feb/21

 Given ∫_a ^( b)  ((x^2 −3x)/(∣x−3∣)) dx = ((11)/2) where  { ((a<3<b)),((a+2b=8)) :}   Find ∫_a ^b  ∣x∣ dx.

$$\:\mathrm{Given}\:\int_{{a}} ^{\:{b}} \:\frac{{x}^{\mathrm{2}} −\mathrm{3}{x}}{\mid{x}−\mathrm{3}\mid}\:\mathrm{dx}\:=\:\frac{\mathrm{11}}{\mathrm{2}}\:\mathrm{where}\:\begin{cases}{{a}<\mathrm{3}<{b}}\\{{a}+\mathrm{2}{b}=\mathrm{8}}\end{cases} \\ $$ $$\:\mathrm{Find}\:\int_{{a}} ^{{b}} \:\mid{x}\mid\:\mathrm{dx}.\: \\ $$

Answered by bemath last updated on 14/Feb/21

From a<3<b we get  { ((a−3<0 and)),((b−3>0)) :}  the integral becomes ∫_a ^3 −((x(x−3))/(x−3))dx+∫_3 ^b ((x(x−3))/(x−3)) dx=((11)/2)   (1/(2  ))[ x^2  ]_3 ^b −(1/2) [ x^2  ]_a ^3  = ((11)/2)  ⇔ b^2 −9−(9−a^2 )=11  ⇒b^2 +a^2  = 29 ∧ a=8−2b  ⇒b^2 +4b^2 −32b+64−29=0  ⇔5b^2 −32b+35=0  ⇔(5b−7)(b−5)=0 → { ((b=(7/5) (rejected))),((b=5 (accept))) :}  we get a=−2 . So ∫^(   5) _(−2) ∣x∣ dx =  ∫^(   0) _(−2) −x dx+∫_0 ^5 x dx = −(1/2)(−4)+(1/2)(25)=((29)/2)

$$\mathrm{From}\:{a}<\mathrm{3}<{b}\:\mathrm{we}\:\mathrm{get}\:\begin{cases}{{a}−\mathrm{3}<\mathrm{0}\:{and}}\\{{b}−\mathrm{3}>\mathrm{0}}\end{cases} \\ $$ $$\mathrm{the}\:\mathrm{integral}\:\mathrm{becomes}\:\int_{{a}} ^{\mathrm{3}} −\frac{{x}\left({x}−\mathrm{3}\right)}{{x}−\mathrm{3}}{dx}+\int_{\mathrm{3}} ^{{b}} \frac{{x}\left({x}−\mathrm{3}\right)}{{x}−\mathrm{3}}\:{dx}=\frac{\mathrm{11}}{\mathrm{2}} \\ $$ $$\:\frac{\mathrm{1}}{\mathrm{2}\:\:}\left[\:{x}^{\mathrm{2}} \:\right]_{\mathrm{3}} ^{{b}} −\frac{\mathrm{1}}{\mathrm{2}}\:\left[\:{x}^{\mathrm{2}} \:\right]_{{a}} ^{\mathrm{3}} \:=\:\frac{\mathrm{11}}{\mathrm{2}} \\ $$ $$\Leftrightarrow\:{b}^{\mathrm{2}} −\mathrm{9}−\left(\mathrm{9}−{a}^{\mathrm{2}} \right)=\mathrm{11} \\ $$ $$\Rightarrow{b}^{\mathrm{2}} +{a}^{\mathrm{2}} \:=\:\mathrm{29}\:\wedge\:{a}=\mathrm{8}−\mathrm{2}{b} \\ $$ $$\Rightarrow{b}^{\mathrm{2}} +\mathrm{4}{b}^{\mathrm{2}} −\mathrm{32}{b}+\mathrm{64}−\mathrm{29}=\mathrm{0} \\ $$ $$\Leftrightarrow\mathrm{5}{b}^{\mathrm{2}} −\mathrm{32}{b}+\mathrm{35}=\mathrm{0} \\ $$ $$\Leftrightarrow\left(\mathrm{5}{b}−\mathrm{7}\right)\left({b}−\mathrm{5}\right)=\mathrm{0}\:\rightarrow\begin{cases}{\mathrm{b}=\frac{\mathrm{7}}{\mathrm{5}}\:\left(\mathrm{rejected}\right)}\\{{b}=\mathrm{5}\:\left({accept}\right)}\end{cases} \\ $$ $${we}\:{get}\:{a}=−\mathrm{2}\:.\:{S}\mathrm{o}\:\underset{−\mathrm{2}} {\int}^{\:\:\:\mathrm{5}} \mid\mathrm{x}\mid\:\mathrm{dx}\:= \\ $$ $$\underset{−\mathrm{2}} {\int}^{\:\:\:\mathrm{0}} −\mathrm{x}\:\mathrm{dx}+\int_{\mathrm{0}} ^{\mathrm{5}} \mathrm{x}\:\mathrm{dx}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\left(−\mathrm{4}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{25}\right)=\frac{\mathrm{29}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com