Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 22154 by Joel577 last updated on 12/Oct/17

Given a,b,c real and positive numbers, and  a + b + c = 1  Find the minimum value of  ((a + b)/(abc))

$$\mathrm{Given}\:{a},{b},{c}\:\mathrm{real}\:\mathrm{and}\:\mathrm{positive}\:\mathrm{numbers},\:\mathrm{and} \\ $$$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{1} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\:\frac{{a}\:+\:{b}}{{abc}} \\ $$

Answered by ajfour last updated on 12/Oct/17

let a=cx    and  b=cy  then   c(x+y+1)=1  z=((a+b)/(abc)) =((x+y)/(c^2 xy)) =(((x+y)(x+y+1)^2 )/(xy))  As z is minimum,  (∂z/∂x) =((x[(x+y+1)^2 +2(x+y)(x+y+1)]−(x+y)(x+y+1)^2 )/(x^2 y)) =0  ⇒ x[x+y+1+2x+2y]−(x+y)(x+y+1)=0  3x^2 +3xy+x−x^2 −y^2 −2xy−x−y=0  2x^2 +xy−y^2 −y=0  2x^2 +(x−1)y−y^2 =0       ...(i)  similarly  (∂z/∂y)=0  shall give  2y^2 +(y−1)x−x^2 =0     ...(ii)  ⇒   x=y  so   2x^2 +x^2 −x−x^2 =0  ⇒      2x^2 −x=0         or     x(x−(1/2))=0    we shall choose x=y=(1/2) since  a, b, and c are +ve real numbers.  Then    a=(c/2)    ;    b=(c/2)        ⇒   (c/2)+(c/2)+c =1     so     c=(1/2) ,  a=(1/4) ,   b=(1/4)   ⇒  min( ((a+b)/(abc)) )= ((1/2)/(1/32)) =16 .

$${let}\:{a}={cx}\:\:\:\:{and}\:\:{b}={cy} \\ $$$${then}\:\:\:{c}\left({x}+{y}+\mathrm{1}\right)=\mathrm{1} \\ $$$${z}=\frac{{a}+{b}}{{abc}}\:=\frac{{x}+{y}}{{c}^{\mathrm{2}} {xy}}\:=\frac{\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right)^{\mathrm{2}} }{{xy}} \\ $$$${As}\:{z}\:{is}\:{minimum}, \\ $$$$\frac{\partial{z}}{\partial{x}}\:=\frac{{x}\left[\left({x}+{y}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right)\right]−\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} {y}}\:=\mathrm{0} \\ $$$$\Rightarrow\:{x}\left[{x}+{y}+\mathrm{1}+\mathrm{2}{x}+\mathrm{2}{y}\right]−\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{xy}+{x}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −\mathrm{2}{xy}−{x}−{y}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +{xy}−{y}^{\mathrm{2}} −{y}=\mathrm{0} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\left({x}−\mathrm{1}\right){y}−{y}^{\mathrm{2}} =\mathrm{0}\:\:\:\:\:\:\:...\left({i}\right) \\ $$$${similarly}\:\:\frac{\partial{z}}{\partial{y}}=\mathrm{0}\:\:{shall}\:{give} \\ $$$$\mathrm{2}{y}^{\mathrm{2}} +\left({y}−\mathrm{1}\right){x}−{x}^{\mathrm{2}} =\mathrm{0}\:\:\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\:\:\:{x}={y} \\ $$$${so}\:\:\:\mathrm{2}{x}^{\mathrm{2}} +{x}^{\mathrm{2}} −{x}−{x}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\:\:\mathrm{2}{x}^{\mathrm{2}} −{x}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:{or}\:\:\:\:\:{x}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\:\:{we}\:{shall}\:{choose}\:{x}={y}=\frac{\mathrm{1}}{\mathrm{2}}\:{since} \\ $$$${a},\:{b},\:{and}\:{c}\:{are}\:+{ve}\:{real}\:{numbers}. \\ $$$${Then}\:\:\:\:{a}=\frac{{c}}{\mathrm{2}}\:\:\:\:;\:\:\:\:{b}=\frac{{c}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\:\frac{{c}}{\mathrm{2}}+\frac{{c}}{\mathrm{2}}+{c}\:=\mathrm{1}\:\:\: \\ $$$${so}\:\:\:\:\:{c}=\frac{\mathrm{1}}{\mathrm{2}}\:,\:\:{a}=\frac{\mathrm{1}}{\mathrm{4}}\:,\:\:\:{b}=\frac{\mathrm{1}}{\mathrm{4}}\: \\ $$$$\Rightarrow\:\:{min}\left(\:\frac{{a}+{b}}{{abc}}\:\right)=\:\frac{\mathrm{1}/\mathrm{2}}{\mathrm{1}/\mathrm{32}}\:=\mathrm{16}\:. \\ $$

Commented by Joel577 last updated on 12/Oct/17

Thank you very much Sir

$${Thank}\:{you}\:{very}\:{much}\:{Sir} \\ $$

Commented by Joel577 last updated on 12/Oct/17

I have heard about inequality AM ≥ GM  is it possible to use that inequality?

$${I}\:{have}\:{heard}\:{about}\:{inequality}\:{AM}\:\geqslant\:{GM} \\ $$$${is}\:{it}\:{possible}\:{to}\:{use}\:{that}\:{inequality}? \\ $$

Answered by ajfour last updated on 12/Oct/17

let  a+b=p  and   f=((a+b)/(abc)) =(p/(abc))   = ((4p)/((4ab)c))   ⇒      f =((4p)/([(a+b)^2 −(a−b)^2 ]c))       or  f=((4p)/([p^2 −(a−b)^2 ]c))  For f to be minimum ,   a=b  ⇒     f=((4p)/(p^2 c)) = (4/(pc))       but a+b+c =1  ⇒   p+c=1  max. of cp results when c=p  ⇒     c=(1/2) and p=(1/2)         So  f =(4/(cp)) =(4/((1/4))) =16 .

$${let}\:\:{a}+{b}={p} \\ $$$${and}\:\:\:{f}=\frac{{a}+{b}}{{abc}}\:=\frac{{p}}{{abc}}\:\:\:=\:\frac{\mathrm{4}{p}}{\left(\mathrm{4}{ab}\right){c}} \\ $$$$\:\Rightarrow\:\:\:\:\:\:{f}\:=\frac{\mathrm{4}{p}}{\left[\left({a}+{b}\right)^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} \right]{c}} \\ $$$$\:\:\:\:\:{or}\:\:{f}=\frac{\mathrm{4}{p}}{\left[{p}^{\mathrm{2}} −\left({a}−{b}\right)^{\mathrm{2}} \right]{c}} \\ $$$${For}\:{f}\:{to}\:{be}\:{minimum}\:,\:\:\:{a}={b} \\ $$$$\Rightarrow\:\:\:\:\:{f}=\frac{\mathrm{4}{p}}{{p}^{\mathrm{2}} {c}}\:=\:\frac{\mathrm{4}}{{pc}} \\ $$$$\:\:\:\:\:{but}\:{a}+{b}+{c}\:=\mathrm{1}\:\:\Rightarrow\:\:\:{p}+{c}=\mathrm{1} \\ $$$${max}.\:{of}\:{cp}\:{results}\:{when}\:{c}={p} \\ $$$$\Rightarrow\:\:\:\:\:{c}=\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{p}=\frac{\mathrm{1}}{\mathrm{2}}\:\: \\ $$$$\:\:\:\:\:{So}\:\:\boldsymbol{{f}}\:=\frac{\mathrm{4}}{\boldsymbol{{cp}}}\:=\frac{\mathrm{4}}{\left(\mathrm{1}/\mathrm{4}\right)}\:=\mathrm{16}\:. \\ $$

Commented by Joel577 last updated on 13/Oct/17

thank you very much

$${thank}\:{you}\:{very}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com