Question Number 134912 by bramlexs22 last updated on 08/Mar/21 | ||
$$\mathrm{Given}\:\begin{cases}{\mathrm{a}+\mathrm{b}=\mathrm{5ab}}\\{\mathrm{b}+\mathrm{c}=\mathrm{7bc}}\\{\mathrm{c}+\mathrm{a}=\mathrm{6ac}}\end{cases} \\ $$$$\mathrm{where}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\neq\:\mathrm{0}. \\ $$$$\mathrm{Find}\:\mathrm{abc} \\ $$ | ||
Answered by Ñï= last updated on 08/Mar/21 | ||
$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\mathrm{5}\Leftrightarrow{A}+{B}=\mathrm{5} \\ $$$$\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\mathrm{7}\Leftrightarrow{B}+{C}=\mathrm{7} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{c}}=\mathrm{6}\Leftrightarrow{A}+{C}=\mathrm{6} \\ $$$$\Rightarrow{A}=\mathrm{2}\:\:\:\:{B}=\mathrm{3}\:\:\:{C}=\mathrm{4} \\ $$$$\Rightarrow\:\:{abc}=\frac{\mathrm{1}}{{ABC}}=\frac{\mathrm{1}}{\mathrm{24}} \\ $$ | ||
Commented by Rasheed.Sindhi last updated on 10/Mar/21 | ||
$${Nice}\:{sir}! \\ $$ | ||