Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 134912 by bramlexs22 last updated on 08/Mar/21

Given  { ((a+b=5ab)),((b+c=7bc)),((c+a=6ac)) :}  where a,b,c ≠ 0.  Find abc

$$\mathrm{Given}\:\begin{cases}{\mathrm{a}+\mathrm{b}=\mathrm{5ab}}\\{\mathrm{b}+\mathrm{c}=\mathrm{7bc}}\\{\mathrm{c}+\mathrm{a}=\mathrm{6ac}}\end{cases} \\ $$$$\mathrm{where}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\neq\:\mathrm{0}. \\ $$$$\mathrm{Find}\:\mathrm{abc} \\ $$

Answered by Ñï= last updated on 08/Mar/21

(1/a)+(1/b)=5⇔A+B=5  (1/b)+(1/c)=7⇔B+C=7  (1/a)+(1/c)=6⇔A+C=6  ⇒A=2    B=3   C=4  ⇒  abc=(1/(ABC))=(1/(24))

$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}=\mathrm{5}\Leftrightarrow{A}+{B}=\mathrm{5} \\ $$$$\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}=\mathrm{7}\Leftrightarrow{B}+{C}=\mathrm{7} \\ $$$$\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{c}}=\mathrm{6}\Leftrightarrow{A}+{C}=\mathrm{6} \\ $$$$\Rightarrow{A}=\mathrm{2}\:\:\:\:{B}=\mathrm{3}\:\:\:{C}=\mathrm{4} \\ $$$$\Rightarrow\:\:{abc}=\frac{\mathrm{1}}{{ABC}}=\frac{\mathrm{1}}{\mathrm{24}} \\ $$

Commented by Rasheed.Sindhi last updated on 10/Mar/21

Nice sir!

$${Nice}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com