Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 114638 by bobhans last updated on 20/Sep/20

Given a = ((1^2 +2^2 +3^2 +...+16^2 −16)/(1.3+2.4+3.5+...+15.17))     c = (1−(1/2)).(1−(1/3)).(1−(1/4)).(1−(1/5)).             (1+(1/5))(1+(1/4))(1+(1/3))(1+(1/2)).  find a×c =

$${Given}\:{a}\:=\:\frac{\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{16}^{\mathrm{2}} −\mathrm{16}}{\mathrm{1}.\mathrm{3}+\mathrm{2}.\mathrm{4}+\mathrm{3}.\mathrm{5}+...+\mathrm{15}.\mathrm{17}} \\ $$$$\:\:\:{c}\:=\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\right).\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}\right).\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right).\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}\right). \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{5}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right). \\ $$$${find}\:{a}×{c}\:=\: \\ $$

Answered by bemath last updated on 20/Sep/20

(1) c = (1/2)×(2/3)×(3/4)×(4/5)×(6/5)×(5/4)×(4/3)×(3/2)         c = (1/5)×(6/2)=(3/5)  a = ((Σ_(k=1) ^(16) k^2 −16)/(Σ_(k=1) ^(15) k(k+2))) = ((((16.17.33)/6)−16)/(((15.16.31)/6)+2(((15.16)/2))))  = ((8.17.11−16)/(5.8.31+15.16)) = ((8(17.11−2))/(5.8(31+6)))  = ((185)/(5.37)) = 1  then a×c = 1×(3/5)=(3/5)

$$\left(\mathrm{1}\right)\:{c}\:=\:\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{4}}{\mathrm{5}}×\frac{\mathrm{6}}{\mathrm{5}}×\frac{\mathrm{5}}{\mathrm{4}}×\frac{\mathrm{4}}{\mathrm{3}}×\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:{c}\:=\:\frac{\mathrm{1}}{\mathrm{5}}×\frac{\mathrm{6}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$$${a}\:=\:\frac{\underset{{k}=\mathrm{1}} {\overset{\mathrm{16}} {\sum}}{k}^{\mathrm{2}} −\mathrm{16}}{\underset{{k}=\mathrm{1}} {\overset{\mathrm{15}} {\sum}}{k}\left({k}+\mathrm{2}\right)}\:=\:\frac{\frac{\mathrm{16}.\mathrm{17}.\mathrm{33}}{\mathrm{6}}−\mathrm{16}}{\frac{\mathrm{15}.\mathrm{16}.\mathrm{31}}{\mathrm{6}}+\mathrm{2}\left(\frac{\mathrm{15}.\mathrm{16}}{\mathrm{2}}\right)} \\ $$$$=\:\frac{\mathrm{8}.\mathrm{17}.\mathrm{11}−\mathrm{16}}{\mathrm{5}.\mathrm{8}.\mathrm{31}+\mathrm{15}.\mathrm{16}}\:=\:\frac{\mathrm{8}\left(\mathrm{17}.\mathrm{11}−\mathrm{2}\right)}{\mathrm{5}.\mathrm{8}\left(\mathrm{31}+\mathrm{6}\right)} \\ $$$$=\:\frac{\mathrm{185}}{\mathrm{5}.\mathrm{37}}\:=\:\mathrm{1} \\ $$$${then}\:{a}×{c}\:=\:\mathrm{1}×\frac{\mathrm{3}}{\mathrm{5}}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$

Commented by PRITHWISH SEN 2 last updated on 20/Sep/20

c=(3/5)

$$\mathrm{c}=\frac{\mathrm{3}}{\mathrm{5}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com