Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 159111 by mathocean1 last updated on 13/Nov/21

Given A^→ =5t^2 i^→ +tj^→ −t^3 k^→  and  B^→ =sin(t)i^→ −cos(t)j^→ .  Calculate ((d(A^→ .B^→ ))/dx) ; ((d(A^→ ∧B^→ ))/dx)  and  ((d(A^→ .A^→ ))/dx).

$${Given}\:\overset{\rightarrow} {{A}}=\mathrm{5}{t}^{\mathrm{2}} \overset{\rightarrow} {{i}}+{t}\overset{\rightarrow} {{j}}−{t}^{\mathrm{3}} \overset{\rightarrow} {{k}}\:{and} \\ $$$$\overset{\rightarrow} {{B}}={sin}\left({t}\right)\overset{\rightarrow} {{i}}−{cos}\left({t}\right)\overset{\rightarrow} {{j}}. \\ $$$${Calculate}\:\frac{{d}\left(\overset{\rightarrow} {{A}}.\overset{\rightarrow} {{B}}\right)}{{dx}}\:;\:\frac{{d}\left(\overset{\rightarrow} {{A}}\wedge\overset{\rightarrow} {{B}}\right)}{{dx}}\:\:{and} \\ $$$$\frac{{d}\left(\overset{\rightarrow} {{A}}.\overset{\rightarrow} {{A}}\right)}{{dx}}. \\ $$

Answered by physicstutes last updated on 13/Nov/21

A^→ .B^→  = 5t^2 sin (t) −t cos t  ⇒ ((d(A^→ .B^→ ))/dt) = 5t^2 cos t + 10t sin t + t sin t −cos t    = 5t^2  cos t + 11t sin t − cos t  A∧B =  (((5t^2  )),(t),((−t^3 )) )× (((sin t)),((− cos t)),(0) ) =  (((t^3  cos t)),((−t^3 sin t)),((t^3 cos t)) )  ((d(A×B))/dt) = (−t^3 sin t + 3t^2 cost)i +...

$$\overset{\rightarrow} {{A}}.\overset{\rightarrow} {{B}}\:=\:\mathrm{5}{t}^{\mathrm{2}} \mathrm{sin}\:\left({t}\right)\:−{t}\:\mathrm{cos}\:{t} \\ $$$$\Rightarrow\:\frac{{d}\left(\overset{\rightarrow} {{A}}.\overset{\rightarrow} {{B}}\right)}{{dt}}\:=\:\mathrm{5}{t}^{\mathrm{2}} \mathrm{cos}\:{t}\:+\:\mathrm{10}{t}\:\mathrm{sin}\:{t}\:+\:{t}\:\mathrm{sin}\:{t}\:−\mathrm{cos}\:{t} \\ $$$$\:\:=\:\mathrm{5}{t}^{\mathrm{2}} \:\mathrm{cos}\:{t}\:+\:\mathrm{11}{t}\:\mathrm{sin}\:{t}\:−\:\mathrm{cos}\:{t} \\ $$$$\boldsymbol{\mathrm{A}}\wedge\boldsymbol{\mathrm{B}}\:=\:\begin{pmatrix}{\mathrm{5}{t}^{\mathrm{2}} \:}\\{{t}}\\{−{t}^{\mathrm{3}} }\end{pmatrix}×\begin{pmatrix}{\mathrm{sin}\:{t}}\\{−\:\mathrm{cos}\:{t}}\\{\mathrm{0}}\end{pmatrix}\:=\:\begin{pmatrix}{{t}^{\mathrm{3}} \:\mathrm{cos}\:{t}}\\{−{t}^{\mathrm{3}} \mathrm{sin}\:{t}}\\{{t}^{\mathrm{3}} \mathrm{cos}\:{t}}\end{pmatrix} \\ $$$$\frac{{d}\left(\boldsymbol{\mathrm{A}}×\boldsymbol{\mathrm{B}}\right)}{{dt}}\:=\:\left(−{t}^{\mathrm{3}} \mathrm{sin}\:{t}\:+\:\mathrm{3}{t}^{\mathrm{2}} \mathrm{cos}{t}\right)\boldsymbol{\mathrm{i}}\:+... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com