Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 209557 by Spillover last updated on 14/Jul/24

Given    ∫_2 ^4 (ax^n +1)dx=58     ∫_0 ^2 (ax^n +1)dx=10  find the value of  a   and  n

$${Given}\: \\ $$$$\:\int_{\mathrm{2}} ^{\mathrm{4}} \left({ax}^{{n}} +\mathrm{1}\right){dx}=\mathrm{58}\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{2}} \left({ax}^{{n}} +\mathrm{1}\right){dx}=\mathrm{10} \\ $$$${find}\:{the}\:{value}\:{of}\:\:{a}\:\:\:{and}\:\:{n} \\ $$

Answered by mr W last updated on 14/Jul/24

∫_0 ^2 (ax^n +1)dx=[((ax^(n+1) )/(n+1))+x]_0 ^2 =((a2^(n+1) )/(n+1))+2=10  ⇒((a2^(n+1) )/(n+1))=8   ...(i)  ∫_0 ^4 (ax^n +1)dx=((a4^(n+1) )/(n+1))+4=10+58=68  ⇒((a4^(n+1) )/(n+1))=64   ...(ii)  (ii)/(i): ((4/2))^(n+1) =8 ⇒n=2 ✓  ⇒a=((8×3)/2^3 )=3 ✓

$$\int_{\mathrm{0}} ^{\mathrm{2}} \left({ax}^{{n}} +\mathrm{1}\right){dx}=\left[\frac{{ax}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}+{x}\right]_{\mathrm{0}} ^{\mathrm{2}} =\frac{{a}\mathrm{2}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}+\mathrm{2}=\mathrm{10} \\ $$$$\Rightarrow\frac{{a}\mathrm{2}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}=\mathrm{8}\:\:\:...\left({i}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{4}} \left({ax}^{{n}} +\mathrm{1}\right){dx}=\frac{{a}\mathrm{4}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}+\mathrm{4}=\mathrm{10}+\mathrm{58}=\mathrm{68} \\ $$$$\Rightarrow\frac{{a}\mathrm{4}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}=\mathrm{64}\:\:\:...\left({ii}\right) \\ $$$$\left({ii}\right)/\left({i}\right):\:\left(\frac{\mathrm{4}}{\mathrm{2}}\right)^{{n}+\mathrm{1}} =\mathrm{8}\:\Rightarrow{n}=\mathrm{2}\:\checkmark \\ $$$$\Rightarrow{a}=\frac{\mathrm{8}×\mathrm{3}}{\mathrm{2}^{\mathrm{3}} }=\mathrm{3}\:\checkmark \\ $$

Commented by Spillover last updated on 14/Jul/24

thank you

$${thank}\:{you} \\ $$

Answered by lepuissantcedricjunior last updated on 16/Jul/24

∫_2 ^4 (ax^n +1)dx=58  ∫_0 ^2 (ax^n +1)dx=10  => { ((∫_2 ^4 (ax^n +1)dx)),((∫_0 ^2 (ax^n +1)dx)) :}=> { ((=[(a/(1+n))x^(n+1) +x]_2 ^4 )),((=[(a/(n+1))x^(n+1) +x]_0 ^2 )) :}=> { ((=((2^(2n+2) a)/(1+n))−((2^(n+1) a)/(n+1))+2)),((=((2^(n+1) a)/(n+1))+2)) :}  => { ((((2^(n+1) a(2^(n+1) −1))/(n+1))=56(1))),((((2^(n+1) a)/(n+1))=8(2)remplacons dans (1))) :}  =>8(2^(n+1) −1)=56=>2^(n+1) =8=2^3   =>n+1=3=>n=2  deplus ((2^(n+1) a)/(n+1))=8=>(8/3)a=8=>a=3  d′ou′ ⇒{(n;a)}={(2;3)}  ............le puissant cedric junior........

$$\int_{\mathrm{2}} ^{\mathrm{4}} \left(\boldsymbol{{ax}}^{\boldsymbol{{n}}} +\mathrm{1}\right)\boldsymbol{{dx}}=\mathrm{58} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{2}} \left(\boldsymbol{{ax}}^{\boldsymbol{{n}}} +\mathrm{1}\right)\boldsymbol{{dx}}=\mathrm{10} \\ $$$$=>\begin{cases}{\int_{\mathrm{2}} ^{\mathrm{4}} \left(\boldsymbol{{ax}}^{\boldsymbol{{n}}} +\mathrm{1}\right)\boldsymbol{{dx}}}\\{\int_{\mathrm{0}} ^{\mathrm{2}} \left(\boldsymbol{{ax}}^{\boldsymbol{{n}}} +\mathrm{1}\right)\boldsymbol{{dx}}}\end{cases}=>\begin{cases}{=\left[\frac{\boldsymbol{{a}}}{\mathrm{1}+\boldsymbol{{n}}}\boldsymbol{{x}}^{\boldsymbol{{n}}+\mathrm{1}} +\boldsymbol{{x}}\right]_{\mathrm{2}} ^{\mathrm{4}} }\\{=\left[\frac{\boldsymbol{{a}}}{\boldsymbol{{n}}+\mathrm{1}}\boldsymbol{{x}}^{\boldsymbol{{n}}+\mathrm{1}} +\boldsymbol{{x}}\right]_{\mathrm{0}} ^{\mathrm{2}} }\end{cases}=>\begin{cases}{=\frac{\mathrm{2}^{\mathrm{2}\boldsymbol{{n}}+\mathrm{2}} \boldsymbol{{a}}}{\mathrm{1}+\boldsymbol{{n}}}−\frac{\mathrm{2}^{\boldsymbol{{n}}+\mathrm{1}} \boldsymbol{{a}}}{\boldsymbol{{n}}+\mathrm{1}}+\mathrm{2}}\\{=\frac{\mathrm{2}^{\boldsymbol{{n}}+\mathrm{1}} \boldsymbol{{a}}}{\boldsymbol{{n}}+\mathrm{1}}+\mathrm{2}}\end{cases} \\ $$$$=>\begin{cases}{\frac{\mathrm{2}^{\boldsymbol{{n}}+\mathrm{1}} \boldsymbol{{a}}\left(\mathrm{2}^{\boldsymbol{{n}}+\mathrm{1}} −\mathrm{1}\right)}{\boldsymbol{{n}}+\mathrm{1}}=\mathrm{56}\left(\mathrm{1}\right)}\\{\frac{\mathrm{2}^{\boldsymbol{{n}}+\mathrm{1}} \boldsymbol{{a}}}{\boldsymbol{{n}}+\mathrm{1}}=\mathrm{8}\left(\mathrm{2}\right)\boldsymbol{{remplacons}}\:\boldsymbol{{dans}}\:\left(\mathrm{1}\right)}\end{cases} \\ $$$$=>\mathrm{8}\left(\mathrm{2}^{\boldsymbol{{n}}+\mathrm{1}} −\mathrm{1}\right)=\mathrm{56}=>\mathrm{2}^{\boldsymbol{{n}}+\mathrm{1}} =\mathrm{8}=\mathrm{2}^{\mathrm{3}} \\ $$$$=>\boldsymbol{{n}}+\mathrm{1}=\mathrm{3}=>\boldsymbol{{n}}=\mathrm{2} \\ $$$$\boldsymbol{{deplus}}\:\frac{\mathrm{2}^{\boldsymbol{{n}}+\mathrm{1}} \boldsymbol{{a}}}{\boldsymbol{{n}}+\mathrm{1}}=\mathrm{8}=>\frac{\mathrm{8}}{\mathrm{3}}\boldsymbol{{a}}=\mathrm{8}=>\boldsymbol{{a}}=\mathrm{3} \\ $$$$\boldsymbol{{d}}'\boldsymbol{{ou}}'\:\Rightarrow\left\{\left(\boldsymbol{{n}};\boldsymbol{{a}}\right)\right\}=\left\{\left(\mathrm{2};\mathrm{3}\right)\right\} \\ $$$$............{le}\:{puissant}\:{cedric}\:{junior}........ \\ $$

Commented by Spillover last updated on 30/Jul/24

great

$${great} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com