Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 10528 by Saham last updated on 16/Feb/17

Give the velocity field  v = (6 + 2xy + t^2 )i − (xy^2  + 10t)j + 25k  what is the acceleration of the particle at (3, 0, 2)  at time t = 1.

$$\mathrm{Give}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{field} \\ $$$$\mathrm{v}\:=\:\left(\mathrm{6}\:+\:\mathrm{2xy}\:+\:\mathrm{t}^{\mathrm{2}} \right)\mathrm{i}\:−\:\left(\mathrm{xy}^{\mathrm{2}} \:+\:\mathrm{10t}\right)\mathrm{j}\:+\:\mathrm{25k} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{at}\:\left(\mathrm{3},\:\mathrm{0},\:\mathrm{2}\right) \\ $$$$\mathrm{at}\:\mathrm{time}\:\mathrm{t}\:=\:\mathrm{1}. \\ $$

Answered by robocop last updated on 16/Feb/17

v=18+6xy+3+50  a=v′  a=6(x+y)

$${v}=\mathrm{18}+\mathrm{6}{xy}+\mathrm{3}+\mathrm{50} \\ $$$${a}={v}' \\ $$$${a}=\mathrm{6}\left({x}+{y}\right) \\ $$

Commented by Saham last updated on 16/Feb/17

Thanks sir.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Commented by FilupS last updated on 18/Feb/17

incorrect. you are refering to  linear velocity  i.e.   v∈R  This question is about a particle in a field  i.e. v∈R^3

$$\mathrm{incorrect}.\:\mathrm{you}\:\mathrm{are}\:\mathrm{refering}\:\mathrm{to} \\ $$$$\mathrm{linear}\:\mathrm{velocity} \\ $$$$\mathrm{i}.\mathrm{e}.\:\:\:{v}\in\mathbb{R} \\ $$$$\mathrm{This}\:\mathrm{question}\:\mathrm{is}\:\mathrm{about}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{in}\:\mathrm{a}\:\mathrm{field} \\ $$$$\mathrm{i}.\mathrm{e}.\:{v}\in\mathbb{R}^{\mathrm{3}} \\ $$

Answered by ajfour last updated on 16/Feb/17

a_x =2(yv_x +xv_y +t); at that time and place is =2[0+3(−10)+1]=−58  a_y =−(y^2 v_x +2xyv_y +10); then and there will be =−[0+0+10]=−10  a_z =0  So a^�  then and there (3,0,2,1) would be −58i^� −10j^� .

$${a}_{{x}} =\mathrm{2}\left({yv}_{{x}} +{xv}_{{y}} +{t}\right);\:{at}\:{that}\:{time}\:{and}\:{place}\:{is}\:=\mathrm{2}\left[\mathrm{0}+\mathrm{3}\left(−\mathrm{10}\right)+\mathrm{1}\right]=−\mathrm{58} \\ $$$${a}_{{y}} =−\left({y}^{\mathrm{2}} {v}_{{x}} +\mathrm{2}{xyv}_{{y}} +\mathrm{10}\right);\:{then}\:{and}\:{there}\:{will}\:{be}\:=−\left[\mathrm{0}+\mathrm{0}+\mathrm{10}\right]=−\mathrm{10} \\ $$$${a}_{{z}} =\mathrm{0} \\ $$$${So}\:\bar {{a}}\:{then}\:{and}\:{there}\:\left(\mathrm{3},\mathrm{0},\mathrm{2},\mathrm{1}\right)\:{would}\:{be}\:−\mathrm{58}\hat {{i}}−\mathrm{10}\hat {{j}}. \\ $$

Commented by Saham last updated on 16/Feb/17

Thanks sir.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Answered by mrW1 last updated on 16/Feb/17

v_x =6+2xy+t^2   v_y =−(xy^2 +10t)  v_z =25  a_x =(dv_x /dt)=2x(dy/dt)+2y(dx/dt)+2t=2(xv_y +yv_x +t)  a_y =(dv_y /dt)=−(xy(dy/dt)+y^2 (dx/dt)+10)=−(xyv_y +y^2 v_x +10)  a_z =0    at (3,0,2) and t=1:  v_x =6+2×3×0+1^2 =7  v_y =−(3×0^2 +10×1)=−10  v_z =25  a_x =2[3×(−10)+0×7+1]=−58  a_y =−[3×0×(−10)+0^2 ×7+10]=−10  a_z =0  ⇒a=−58i−10j+0k

$${v}_{{x}} =\mathrm{6}+\mathrm{2}{xy}+{t}^{\mathrm{2}} \\ $$$${v}_{{y}} =−\left({xy}^{\mathrm{2}} +\mathrm{10}{t}\right) \\ $$$${v}_{{z}} =\mathrm{25} \\ $$$${a}_{{x}} =\frac{{dv}_{{x}} }{{dt}}=\mathrm{2}{x}\frac{{dy}}{{dt}}+\mathrm{2}{y}\frac{{dx}}{{dt}}+\mathrm{2}{t}=\mathrm{2}\left({xv}_{{y}} +{yv}_{{x}} +{t}\right) \\ $$$${a}_{{y}} =\frac{{dv}_{{y}} }{{dt}}=−\left({xy}\frac{{dy}}{{dt}}+{y}^{\mathrm{2}} \frac{{dx}}{{dt}}+\mathrm{10}\right)=−\left({xyv}_{{y}} +{y}^{\mathrm{2}} {v}_{{x}} +\mathrm{10}\right) \\ $$$${a}_{{z}} =\mathrm{0} \\ $$$$ \\ $$$${at}\:\left(\mathrm{3},\mathrm{0},\mathrm{2}\right)\:{and}\:{t}=\mathrm{1}: \\ $$$${v}_{{x}} =\mathrm{6}+\mathrm{2}×\mathrm{3}×\mathrm{0}+\mathrm{1}^{\mathrm{2}} =\mathrm{7} \\ $$$${v}_{{y}} =−\left(\mathrm{3}×\mathrm{0}^{\mathrm{2}} +\mathrm{10}×\mathrm{1}\right)=−\mathrm{10} \\ $$$${v}_{{z}} =\mathrm{25} \\ $$$${a}_{{x}} =\mathrm{2}\left[\mathrm{3}×\left(−\mathrm{10}\right)+\mathrm{0}×\mathrm{7}+\mathrm{1}\right]=−\mathrm{58} \\ $$$${a}_{{y}} =−\left[\mathrm{3}×\mathrm{0}×\left(−\mathrm{10}\right)+\mathrm{0}^{\mathrm{2}} ×\mathrm{7}+\mathrm{10}\right]=−\mathrm{10} \\ $$$${a}_{{z}} =\mathrm{0} \\ $$$$\Rightarrow{a}=−\mathrm{58}{i}−\mathrm{10}{j}+\mathrm{0}{k} \\ $$

Commented by Saham last updated on 16/Feb/17

Thanks sir.

$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com