Question Number 10528 by Saham last updated on 16/Feb/17 | ||
$$\mathrm{Give}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{field} \\ $$$$\mathrm{v}\:=\:\left(\mathrm{6}\:+\:\mathrm{2xy}\:+\:\mathrm{t}^{\mathrm{2}} \right)\mathrm{i}\:−\:\left(\mathrm{xy}^{\mathrm{2}} \:+\:\mathrm{10t}\right)\mathrm{j}\:+\:\mathrm{25k} \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{at}\:\left(\mathrm{3},\:\mathrm{0},\:\mathrm{2}\right) \\ $$$$\mathrm{at}\:\mathrm{time}\:\mathrm{t}\:=\:\mathrm{1}. \\ $$ | ||
Answered by robocop last updated on 16/Feb/17 | ||
$${v}=\mathrm{18}+\mathrm{6}{xy}+\mathrm{3}+\mathrm{50} \\ $$$${a}={v}' \\ $$$${a}=\mathrm{6}\left({x}+{y}\right) \\ $$ | ||
Commented by Saham last updated on 16/Feb/17 | ||
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$ | ||
Commented by FilupS last updated on 18/Feb/17 | ||
$$\mathrm{incorrect}.\:\mathrm{you}\:\mathrm{are}\:\mathrm{refering}\:\mathrm{to} \\ $$$$\mathrm{linear}\:\mathrm{velocity} \\ $$$$\mathrm{i}.\mathrm{e}.\:\:\:{v}\in\mathbb{R} \\ $$$$\mathrm{This}\:\mathrm{question}\:\mathrm{is}\:\mathrm{about}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{in}\:\mathrm{a}\:\mathrm{field} \\ $$$$\mathrm{i}.\mathrm{e}.\:{v}\in\mathbb{R}^{\mathrm{3}} \\ $$ | ||
Answered by ajfour last updated on 16/Feb/17 | ||