Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 49116 by hassentimol last updated on 03/Dec/18

Give a proof for :  2 = (√(2 + (√(2 + (√( 2 + (√(2 + (√( 2 ... ))))))))))

$$\mathrm{Give}\:\mathrm{a}\:\mathrm{proof}\:\mathrm{for}\:: \\ $$$$\mathrm{2}\:=\:\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{2}\:+\:\sqrt{\:\mathrm{2}\:+\:\sqrt{\mathrm{2}\:+\:\sqrt{\:\mathrm{2}\:...\:}}}}} \\ $$

Commented by maxmathsup by imad last updated on 03/Dec/18

let u_(n+1) =(√(2+u_n ))  with n≥0 and u_o =(√2)  ⇒u_(n+1) =f(u_n ) with f(x)=(√(2+x))  we prove by recurrence that u_n >0  we have for x>0 f^′ (x)=(1/(2(√(2+x))))>0 so  f is increasing on [0,+∞[  let w(x)=x−f(x) ⇒  w^′ (x)=1−f^′ (x)=1−(1/(2(√(2+x)))) =((2(√(2+x))−1)/(2(√(2+x)))) >0 ⇒w is increasing on [0,+∞[  we have w(1) =1−f(1)=1−(√3)<0    w(3)=3−f(3)=3−(√5)>0 ⇒ ∃! x_0 ∈]1,3[  / w(x_0 )=0    we verify that x_0 =2   if l=lim_(n→+∞) u_n  we get f(l)=l ⇒  l =x_0 =2 .

$${let}\:{u}_{{n}+\mathrm{1}} =\sqrt{\mathrm{2}+{u}_{{n}} }\:\:{with}\:{n}\geqslant\mathrm{0}\:{and}\:{u}_{{o}} =\sqrt{\mathrm{2}}\:\:\Rightarrow{u}_{{n}+\mathrm{1}} ={f}\left({u}_{{n}} \right)\:{with}\:{f}\left({x}\right)=\sqrt{\mathrm{2}+{x}} \\ $$$${we}\:{prove}\:{by}\:{recurrence}\:{that}\:{u}_{{n}} >\mathrm{0}\:\:{we}\:{have}\:{for}\:{x}>\mathrm{0}\:{f}^{'} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}+{x}}}>\mathrm{0}\:{so} \\ $$$${f}\:{is}\:{increasing}\:{on}\:\left[\mathrm{0},+\infty\left[\:\:{let}\:{w}\left({x}\right)={x}−{f}\left({x}\right)\:\Rightarrow\right.\right. \\ $$$${w}^{'} \left({x}\right)=\mathrm{1}−{f}^{'} \left({x}\right)=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}+{x}}}\:=\frac{\mathrm{2}\sqrt{\mathrm{2}+{x}}−\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}+{x}}}\:>\mathrm{0}\:\Rightarrow{w}\:{is}\:{increasing}\:{on}\:\left[\mathrm{0},+\infty\left[\right.\right. \\ $$$$\left.{we}\:{have}\:{w}\left(\mathrm{1}\right)\:=\mathrm{1}−{f}\left(\mathrm{1}\right)=\mathrm{1}−\sqrt{\mathrm{3}}<\mathrm{0}\:\:\:\:{w}\left(\mathrm{3}\right)=\mathrm{3}−{f}\left(\mathrm{3}\right)=\mathrm{3}−\sqrt{\mathrm{5}}>\mathrm{0}\:\Rightarrow\:\exists!\:{x}_{\mathrm{0}} \in\right]\mathrm{1},\mathrm{3}\left[\right. \\ $$$$/\:{w}\left({x}_{\mathrm{0}} \right)=\mathrm{0}\:\:\:\:{we}\:{verify}\:{that}\:{x}_{\mathrm{0}} =\mathrm{2}\:\:\:{if}\:{l}={lim}_{{n}\rightarrow+\infty} {u}_{{n}} \:{we}\:{get}\:{f}\left({l}\right)={l}\:\Rightarrow \\ $$$${l}\:={x}_{\mathrm{0}} =\mathrm{2}\:. \\ $$$$ \\ $$

Commented by hassentimol last updated on 10/Dec/18

Thanks sir

$$\mathrm{Thanks}\:\mathrm{sir} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Dec/18

k=(√(2+(√(2+(√(2...∞)) ))))  k=(√(2+k))   k^2 −k−2=0  k^2 −2k+k−2=0  k(k−2)+1(k−2)=0  (k−2)(k+1)=0  so k=2

$${k}=\sqrt{\mathrm{2}+\sqrt{\mathrm{2}+\sqrt{\mathrm{2}...\infty}\:}} \\ $$$${k}=\sqrt{\mathrm{2}+{k}}\: \\ $$$${k}^{\mathrm{2}} −{k}−\mathrm{2}=\mathrm{0} \\ $$$${k}^{\mathrm{2}} −\mathrm{2}{k}+{k}−\mathrm{2}=\mathrm{0} \\ $$$${k}\left({k}−\mathrm{2}\right)+\mathrm{1}\left({k}−\mathrm{2}\right)=\mathrm{0} \\ $$$$\left({k}−\mathrm{2}\right)\left({k}+\mathrm{1}\right)=\mathrm{0} \\ $$$${so}\:{k}=\mathrm{2}\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com