Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 194881 by tri26112004 last updated on 18/Jul/23

Give △ABC   Proof: sin A + sin B + sin C > 2

$${Give}\:\bigtriangleup{ABC}\: \\ $$$${Proof}:\:{sin}\:{A}\:+\:{sin}\:{B}\:+\:{sin}\:{C}\:>\:\mathrm{2} \\ $$

Answered by Frix last updated on 19/Jul/23

It′s not true.  0<sin A +sin B +sin C  ≤((3(√3))/2)

$$\mathrm{It}'\mathrm{s}\:\mathrm{not}\:\mathrm{true}. \\ $$$$\mathrm{0}<\mathrm{sin}\:{A}\:+\mathrm{sin}\:{B}\:+\mathrm{sin}\:{C}\:\:\leqslant\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$

Commented by tri26112004 last updated on 19/Jul/23

If it was acute triangle¿

$${If}\:{it}\:{was}\:{acute}\:{triangle}¿ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com