new idea (and solution) to questions 35178 & 35195
triangle:
ABC; a=BC, b=CA, c=AB;
α=∠CAB, β=∠ABC, γ=∠BCA
d=(√((a+b+c)(a+b−c)(a−b+c)(−a+b+c)))
put it as this:
A= ((0),(0) ), B= ((c),(0) ), C= ((((−a^2 +b^2 +c^2 )/(2c))),((d/(2c))) )
circumcircle:
center=M_1 = (((c/2)),((((a^2 +b^2 −c^2 )c)/(2d))) )
radius=R=((abc)/d)
(calculated by intersection of circles with
centers A, B, C or of symmetry−axes of
AB and AC)
2 circles touching b, c and circumcircle,
one from inside, the other from outside:
center=M_2 lies on y=kx with k=tan (α/2)
M_2 = ((x),((xtan (α/2))) )
radius=r_1 =R−∣M_1 M_2 ∣=xtan (α/2) (inside)
r_2 =∣M_1 M_2 ∣−R=xtan (α/2) (outside)
(obviously any circle with center M_2 (x)
and touching the x−axis has radius xtan (α/2)
and also obviously the touching point of
2 circles is located on the line connecting
their centers)
1. ∣M_1 M_2 ∣=R−xtan (α/2)
M_1 M_2 =(R−xtan (α/2))^2
2. ∣M_1 M_2 ∣=R+xtan (α/2)
M_1 M_2 =(R+xtan (α/2))^2
tan (α/2)=((sin (α/2))/(cos (α/2)))=((√((1−cos α)/2))/(√((1+cos α)/2)))=(√((1−cos α)/(1+cos α)))=
[cos α=((−a^2 +b^2 +c^2 )/(2bc))]
=(√((a^2 −b^2 +2bc−c^2 )/(−a^2 +b^2 +2bc+c^2 )))=(√(((a+b−c)(a−b+c))/((a+b+c)(−a+b+c))))
M_1 M_2 =(m_1 −m_2 )^2 +(n_1 −n_2 )^2 =
=((c/2)−x)^2 +((((a^2 +b^2 −c^2 )c)/(2d))−xtan (α/2))^2 =
[after some transformation work]
=((4bc)/((a+b+c)(−a+b+c)))x^2 −((2bc(b+c))/((a+b+c)(−a+b+c)))x+((a^2 b^2 c^2 )/d^2 )
[((a^2 b^2 c^2 )/d^2 )=R^2 ]
(R±xtan (α/2))^2 =x^2 tan^2 (α/2)±2Rxtan (α/2)+R^2 =
=(((a+b−c)(a−b+c))/((a+b+c)(−a+b+c)))x^2 ±((2abc)/((a+b+c)(−a+b+c)))x+R^2
so we have
((4bc)/((a+b+c)(−a+b+c)))x^2 −((2bc(b+c))/((a+b+c)(−a+b+c)))x=
=(((a+b−c)(a−b+c))/((a+b+c)(−a+b+c)))x^2 ±((2abc)/((a+b+c)(−a+b+c)))x
which leads to
x_3 =0 (as I explained before, the point A can
be seen as a circle with radius 0 still
meeting the requirements)
x_1 =((2bc)/(a+b+c)) ⇒ r_1 =2bc(√(((a+b−c)(a−b+c))/((a+b+c)^3 (−a+b+c))))
x_2 =((2bc)/(−a+b+c)) ⇒ r_2 =2bc(√(((a+b−c)(a−b+c))/((a+b+c)(−a+b+c)^3 )))
for the circles corresponding with the points
B and C just interchange {a, b, c} with
{b, c, a} and {c, a, b}
|