Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 88

Question Number 43461    Answers: 0   Comments: 1

found something (others have found before) which I thought might be of interest, especially for Sir Tanmay Chaudhury: take any polynome of degree 4 with 2 real inflection points y=ax^4 +bx^3 +cx^2 +dx+e y′′=12ax^2 +6bx+2c=0 has got 2 real solutions x_1 and x_2 the line connecting the inflection points intersects the curve in 2 more points P and Q, their x−values are p and q let p<x_1 <x_2 <q ⇒ ((x_2 −x_1 )/(x_1 −p))=((x_2 −x_1 )/(q−x_2 ))=(1/2)+((√5)/2) which is the Golden Ratio

$$\mathrm{found}\:\mathrm{something}\:\left(\mathrm{others}\:\mathrm{have}\:\mathrm{found}\:\mathrm{before}\right) \\ $$$$\mathrm{which}\:\mathrm{I}\:\mathrm{thought}\:\mathrm{might}\:\mathrm{be}\:\mathrm{of}\:\mathrm{interest}, \\ $$$$\mathrm{especially}\:\mathrm{for}\:\mathrm{Sir}\:\mathrm{Tanmay}\:\mathrm{Chaudhury}: \\ $$$$\mathrm{take}\:\mathrm{any}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{degree}\:\mathrm{4}\:\mathrm{with}\:\mathrm{2}\:\mathrm{real} \\ $$$$\mathrm{inflection}\:\mathrm{points} \\ $$$${y}={ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e} \\ $$$${y}''=\mathrm{12}{ax}^{\mathrm{2}} +\mathrm{6}{bx}+\mathrm{2}{c}=\mathrm{0}\:\mathrm{has}\:\mathrm{got}\:\mathrm{2}\:\mathrm{real}\:\mathrm{solutions} \\ $$$${x}_{\mathrm{1}} \:\mathrm{and}\:{x}_{\mathrm{2}} \\ $$$$\mathrm{the}\:\mathrm{line}\:\mathrm{connecting}\:\mathrm{the}\:\mathrm{inflection}\:\mathrm{points} \\ $$$$\mathrm{intersects}\:\mathrm{the}\:\mathrm{curve}\:\mathrm{in}\:\mathrm{2}\:\mathrm{more}\:\mathrm{points} \\ $$$${P}\:\mathrm{and}\:{Q},\:\mathrm{their}\:{x}−\mathrm{values}\:\mathrm{are}\:{p}\:\mathrm{and}\:{q} \\ $$$$\mathrm{let}\:{p}<{x}_{\mathrm{1}} <{x}_{\mathrm{2}} <{q} \\ $$$$\Rightarrow\:\frac{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }{{x}_{\mathrm{1}} −{p}}=\frac{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }{{q}−{x}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{2}}\:\mathrm{which}\:\mathrm{is}\:\mathrm{the}\:\mathrm{Golden}\:\mathrm{Ratio} \\ $$

Question Number 43360    Answers: 0   Comments: 9

Question Number 43338    Answers: 1   Comments: 1

Question Number 43264    Answers: 2   Comments: 1

Question Number 43263    Answers: 2   Comments: 0

Question Number 43205    Answers: 1   Comments: 0

Question Number 43135    Answers: 1   Comments: 4

Construct a triangle ΔABC with ∠B=50° AC=6 cm AB+BC=8 cm see also Q42942.

$${Construct}\:{a}\:{triangle}\:\Delta{ABC}\:{with} \\ $$$$\angle{B}=\mathrm{50}° \\ $$$${AC}=\mathrm{6}\:{cm} \\ $$$${AB}+{BC}=\mathrm{8}\:{cm} \\ $$$$ \\ $$$${see}\:{also}\:{Q}\mathrm{42942}. \\ $$

Question Number 42948    Answers: 1   Comments: 5

Question Number 42942    Answers: 2   Comments: 0

Question Number 42592    Answers: 1   Comments: 0

Question Number 42583    Answers: 0   Comments: 6

Question Number 42352    Answers: 1   Comments: 0

Question Number 42154    Answers: 0   Comments: 5

Question Number 42112    Answers: 1   Comments: 1

Question Number 42045    Answers: 0   Comments: 2

i have some thing to say...in this platform several people/students/others post questions..others take promt action to solve the problems.. after the problem got solved..the person/students who post questions never attend or see the answer even do not clarify whether the answer is right or wrong...or whether he/she got understood the method...so pls show your courtsey otherwise your problem remain a problem and nobody bother to solve it...Than you all

$${i}\:{have}\:{some}\:{thing}\:{to}\:{say}...{in}\:{this}\:{platform}\:\:{several} \\ $$$${people}/{students}/{others}\:{post}\:{questions}..{others} \\ $$$${take}\:{promt}\:{action}\:{to}\:{solve}\:{the}\:{problems}.. \\ $$$${after}\:{the}\:{problem}\:{got}\:{solved}..{the}\:{person}/{students} \\ $$$${who}\:{post}\:{questions}\:{never}\:{attend}\:{or}\:{see}\:{the}\:{answer} \\ $$$${even}\:{do}\:{not}\:{clarify}\:{whether}\:{the}\:{answer}\:{is}\:{right} \\ $$$${or}\:{wrong}...{or}\:{whether}\:{he}/{she}\:{got}\:{understood}\:{the} \\ $$$${method}...{so}\:{pls}\:{show}\:{your}\:{courtsey}\:{otherwise} \\ $$$${your}\:{problem}\:{remain}\:{a}\:{problem}\:{and}\:{nobody}\:{bother} \\ $$$${to}\:{solve}\:{it}...{Than}\:{you}\:{all} \\ $$

Question Number 42310    Answers: 1   Comments: 1

Question Number 41766    Answers: 2   Comments: 0

Question Number 41620    Answers: 2   Comments: 1

Question Number 41787    Answers: 1   Comments: 0

Question Number 41521    Answers: 0   Comments: 0

let A(−1,1) and B(0,3) find image of the line (AB) by 1) translation t_u^→ with u^→ (1−2i) 2) rotation R(w,(π/3)) with w(1+i)

$${let}\:{A}\left(−\mathrm{1},\mathrm{1}\right)\:{and}\:{B}\left(\mathrm{0},\mathrm{3}\right)\:\:\:{find}\:\:\:{image}\:{of}\:{the}\:{line}\:\left({AB}\right)\:{by} \\ $$$$\left.\mathrm{1}\right)\:{translation}\:{t}_{\overset{\rightarrow} {{u}}} \:\:\:\:{with}\:\overset{\rightarrow} {{u}}\left(\mathrm{1}−\mathrm{2}{i}\right) \\ $$$$\left.\mathrm{2}\right)\:{rotation}\:{R}\left({w},\frac{\pi}{\mathrm{3}}\right)\:\:{with}\:{w}\left(\mathrm{1}+{i}\right) \\ $$

Question Number 41459    Answers: 0   Comments: 1

Question Number 41348    Answers: 0   Comments: 5

Question Number 41347    Answers: 1   Comments: 0

Question Number 41324    Answers: 1   Comments: 2

Question Number 41214    Answers: 3   Comments: 1

Question Number 41203    Answers: 1   Comments: 5

  Pg 83      Pg 84      Pg 85      Pg 86      Pg 87      Pg 88      Pg 89      Pg 90      Pg 91      Pg 92   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com