Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 81

Question Number 58512    Answers: 1   Comments: 1

Question Number 58493    Answers: 1   Comments: 0

Question Number 58282    Answers: 1   Comments: 0

A circle tangents to :x and y axes and x^(1/2) +y^(1/2) =a^(1/2) .find its radious.

$$\boldsymbol{\mathrm{A}}\:\boldsymbol{\mathrm{circle}}\:\boldsymbol{\mathrm{tangents}}\:\boldsymbol{\mathrm{to}}\::\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{y}}\:\boldsymbol{\mathrm{axes}}\:\boldsymbol{\mathrm{and}} \\ $$$$\:\:\:\:\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{2}}} +\boldsymbol{\mathrm{y}}^{\frac{\mathrm{1}}{\mathrm{2}}} =\boldsymbol{\mathrm{a}}^{\frac{\mathrm{1}}{\mathrm{2}}} .\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{its}}\:\boldsymbol{\mathrm{radious}}. \\ $$

Question Number 57949    Answers: 0   Comments: 0

(0,i,j) is orthonormal A and B are two points wich verify AB =3 find the locus of point M wich verify MA +MB =6

$$\left(\mathrm{0},{i},{j}\right)\:{is}\:{orthonormal}\:\:\:{A}\:{and}\:\:{B}\:{are}\:{two}\:{points}\:{wich}\:{verify}\:{AB}\:=\mathrm{3} \\ $$$${find}\:\:{the}\:{locus}\:{of}\:{point}\:{M}\:{wich}\:{verify}\:\:{MA}\:+{MB}\:=\mathrm{6}\: \\ $$

Question Number 57310    Answers: 0   Comments: 1

Question Number 57296    Answers: 1   Comments: 1

Question Number 57283    Answers: 1   Comments: 1

Question Number 57186    Answers: 1   Comments: 3

Question Number 57198    Answers: 0   Comments: 2

Question Number 56986    Answers: 2   Comments: 1

Question Number 56838    Answers: 1   Comments: 0

What would be the diameter of a circle having a heptagon of sides 45m,60m, 60m,50m,40m,45m and 50m inscribed in it?

$${What}\:{would}\:{be}\:{the}\:{diameter}\:{of}\:{a}\:{circle} \\ $$$${having}\:{a}\:{heptagon}\:{of}\:{sides}\:\mathrm{45}{m},\mathrm{60}{m}, \\ $$$$\mathrm{60}{m},\mathrm{50}{m},\mathrm{40}{m},\mathrm{45}{m}\:{and}\:\mathrm{50}{m}\:{inscribed} \\ $$$${in}\:{it}? \\ $$

Question Number 56639    Answers: 0   Comments: 1

Question Number 56289    Answers: 1   Comments: 7

Question Number 56037    Answers: 1   Comments: 5

Question Number 55820    Answers: 0   Comments: 7

Question Number 55475    Answers: 1   Comments: 0

Find the equation of the plane passing through the points (1,0,0) and (0,1,0) and makes an angle of (π/4) with the plane x+y = 3

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\mathrm{passing}\:\mathrm{through}\:\mathrm{the}\:\mathrm{points} \\ $$$$\left(\mathrm{1},\mathrm{0},\mathrm{0}\right)\:\mathrm{and}\:\left(\mathrm{0},\mathrm{1},\mathrm{0}\right)\:\mathrm{and}\:\mathrm{makes} \\ $$$$\mathrm{an}\:\mathrm{angle}\:\mathrm{of}\:\:\frac{\pi}{\mathrm{4}}\:\mathrm{with}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\mathrm{x}+\mathrm{y}\:=\:\mathrm{3} \\ $$

Question Number 55044    Answers: 1   Comments: 2

Question Number 54991    Answers: 0   Comments: 3

Find all the roots of: z^4 + 16i = 0

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}:\:\:\:\:\:\:\mathrm{z}^{\mathrm{4}} \:+\:\mathrm{16i}\:\:=\:\:\mathrm{0} \\ $$

Question Number 54788    Answers: 2   Comments: 1

How can cut a right angeled triangle to make a square? how can cut a equilateral triangle to make a rectangle?

$${H}\boldsymbol{\mathrm{ow}}\:\boldsymbol{\mathrm{can}}\:\boldsymbol{\mathrm{cut}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{right}}\:\boldsymbol{\mathrm{angeled}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{make}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{square}}? \\ $$$$\boldsymbol{\mathrm{how}}\:\boldsymbol{\mathrm{can}}\:\boldsymbol{\mathrm{cut}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{equilateral}}\:\boldsymbol{\mathrm{triangle}}\:\boldsymbol{\mathrm{to}} \\ $$$$\boldsymbol{\mathrm{make}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{rectangle}}? \\ $$

Question Number 54661    Answers: 1   Comments: 3

Question Number 54602    Answers: 0   Comments: 1

in a given triangle: tg(C/2)=((a.tgA+b.tgB)/(a+b)) . define the kind of triangle.

$${in}\:{a}\:{given}\:{triangle}: \\ $$$$\:\:\:\boldsymbol{\mathrm{tg}}\frac{\boldsymbol{\mathrm{C}}}{\mathrm{2}}=\frac{\boldsymbol{\mathrm{a}}.\boldsymbol{\mathrm{tgA}}+\boldsymbol{\mathrm{b}}.\boldsymbol{\mathrm{tgB}}}{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}}\:. \\ $$$$\boldsymbol{\mathrm{define}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{kind}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{triangle}}. \\ $$

Question Number 54487    Answers: 0   Comments: 0

Question Number 58313    Answers: 2   Comments: 2

Question Number 54312    Answers: 1   Comments: 2

Question Number 54268    Answers: 0   Comments: 1

Question Number 54206    Answers: 1   Comments: 2

  Pg 76      Pg 77      Pg 78      Pg 79      Pg 80      Pg 81      Pg 82      Pg 83      Pg 84      Pg 85   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com