Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 78

Question Number 60588    Answers: 0   Comments: 1

Question Number 60527    Answers: 2   Comments: 1

Question Number 60313    Answers: 3   Comments: 1

Question Number 60283    Answers: 1   Comments: 1

Question Number 60241    Answers: 0   Comments: 1

Question Number 60238    Answers: 0   Comments: 0

Question Number 60085    Answers: 1   Comments: 4

Question Number 60058    Answers: 1   Comments: 1

Question Number 59987    Answers: 0   Comments: 0

Question Number 59700    Answers: 0   Comments: 5

Question Number 59620    Answers: 1   Comments: 2

Question Number 59287    Answers: 1   Comments: 0

A circle x^2 +y^2 −2x−4y−5=0 with centr 0 is cut by a line y=2x+5 at points P and Q. Show that QO is perpendicular to PO.

$$\mathrm{A}\:\mathrm{circle}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{2x}−\mathrm{4y}−\mathrm{5}=\mathrm{0}\:\mathrm{with}\:\mathrm{centr} \\ $$$$\mathrm{0}\:\mathrm{is}\:\mathrm{cut}\:\mathrm{by}\:\mathrm{a}\:\mathrm{line}\:\mathrm{y}=\mathrm{2x}+\mathrm{5}\:\mathrm{at}\:\mathrm{points}\:\mathrm{P}\:\mathrm{and}\:\mathrm{Q}. \\ $$$$\mathrm{Show}\:\mathrm{that}\:\mathrm{QO}\:\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{PO}. \\ $$

Question Number 59181    Answers: 1   Comments: 1

Question Number 59100    Answers: 1   Comments: 4

Question Number 59018    Answers: 0   Comments: 1

Question Number 58986    Answers: 1   Comments: 3

Question Number 58984    Answers: 1   Comments: 0

ABCD is a square, AC is a diagonal. If the coordinate of A, C are (− 5, 8) and (7, − 4) . Find the coordinate of B and D.

$$\mathrm{ABCD}\:\:\mathrm{is}\:\mathrm{a}\:\mathrm{square},\:\mathrm{AC}\:\mathrm{is}\:\mathrm{a}\:\mathrm{diagonal}.\:\mathrm{If}\:\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{of}\:\:\mathrm{A},\:\mathrm{C} \\ $$$$\mathrm{are}\:\:\left(−\:\mathrm{5},\:\mathrm{8}\right)\:\mathrm{and}\:\left(\mathrm{7},\:−\:\mathrm{4}\right)\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{of}\:\:\mathrm{B}\:\mathrm{and}\:\mathrm{D}. \\ $$

Question Number 58979    Answers: 1   Comments: 1

Question Number 58879    Answers: 1   Comments: 0

Question Number 58876    Answers: 1   Comments: 4

Question Number 58756    Answers: 3   Comments: 0

Question Number 58696    Answers: 1   Comments: 3

Question Number 58686    Answers: 0   Comments: 1

Question Number 58567    Answers: 0   Comments: 1

A regular polygon of (2k+1) sides has 140 as the size of each interior angle.Find k

$$\:{A}\:{regular}\:{polygon}\:{of}\:\left(\mathrm{2}{k}+\mathrm{1}\right)\:{sides} \\ $$$${has}\:\mathrm{140}\:{as}\:{the}\:{size}\:{of}\:{each}\:{interior} \\ $$$${angle}.{Find}\:{k} \\ $$

Question Number 58512    Answers: 1   Comments: 1

Question Number 58493    Answers: 1   Comments: 0

  Pg 73      Pg 74      Pg 75      Pg 76      Pg 77      Pg 78      Pg 79      Pg 80      Pg 81      Pg 82   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com