common equation of conic sections
ax^2 +bxy+cy^2 +dx+ey+f=0
if b≠0 we rotate
tan 2α =(b/(a−c)) [if a=c ⇒ α=45°]
{ ((x=x′cos α −y′sin α)),((y=x′sin α +y′cos α)) :}
we now have [using x, y again instead of x′, y′]
Ax^2 +Cy^2 +Dx+Ey+F=0
now complete the squares
A(x+(D/(2A)))^2 +C(y+(E/(2C)))^2 +(F−(D^2 /(4A^2 ))−(E^2 /(4C^2 )))=0
{ ((x=x′−(D/(2A)))),((y=y′−(E/(2C)))) :}
we now have [using x, y again instead of x′, y′]
one of these
{ ((Ax^2 +By^2 +C=0)),((Ax+By^2 +C=0)),((Ax^2 +By+C=0)) :}
a, c, A, C, A, B, C ≠0
in all other cases use your brain to interprete
which kind of curve (if any) we have
|