Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 7

Question Number 218393    Answers: 1   Comments: 0

let ABC be a triangle with incenter I. prove that Ia . Ib . Ic ≤ ((abc)/8)

$$ \\ $$$$\:{let}\:{ABC}\:{be}\:{a}\:{triangle}\:{with}\:{incenter}\:{I}. \\ $$$$\:{prove}\:{that}\:{Ia}\:.\:{Ib}\:.\:{Ic}\:\:\leqslant\:\frac{{abc}}{\mathrm{8}}\:\: \\ $$$$ \\ $$

Question Number 218385    Answers: 3   Comments: 0

Question Number 218267    Answers: 1   Comments: 1

Question Number 218257    Answers: 1   Comments: 2

Question Number 218236    Answers: 1   Comments: 3

Question Number 222197    Answers: 1   Comments: 0

question 211277

$${question}\:\mathrm{211277} \\ $$

Question Number 218021    Answers: 1   Comments: 0

Question Number 218013    Answers: 1   Comments: 0

Question Number 217931    Answers: 2   Comments: 1

Given a regular triangle ABC. AG=2GC. CK=2KB. AK∩BG=M. Prove that CM⊥AK.

$$\mathrm{Given}\:\mathrm{a}\:\mathrm{regular}\:\mathrm{triangle}\:{ABC}. \\ $$$${AG}=\mathrm{2}{GC}.\:{CK}=\mathrm{2}{KB}.\:{AK}\cap{BG}={M}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:{CM}\bot{AK}. \\ $$

Question Number 217912    Answers: 0   Comments: 2

$$ \\ $$

Question Number 217694    Answers: 0   Comments: 0

Question Number 217686    Answers: 1   Comments: 3

Question Number 217631    Answers: 1   Comments: 1

Question Number 217519    Answers: 1   Comments: 1

Question Number 217438    Answers: 0   Comments: 0

Question Number 217358    Answers: 1   Comments: 0

Question Number 217256    Answers: 1   Comments: 0

Question Number 217199    Answers: 2   Comments: 1

Question Number 217148    Answers: 2   Comments: 0

I have seen a relationship in the curve path of a thrown object at β while the total passed distance D_v and highest point had passedD_u then β = arctan(((4D_u )/D_v )) but cant find the proof. I would like to say would anyone like to proove it?then please.

$${I}\:{have}\:{seen}\:{a}\:{relationship}\:{in}\:{the}\:{curve} \\ $$$${path}\:{of}\:{a}\:{thrown}\:{object}\:{at}\:\beta\: \\ $$$${while}\:{the}\:{total}\:{passed}\:{distance}\:{D}_{{v}} \:{and} \\ $$$${highest}\:{point}\:{had}\:{passedD}_{{u}} \\ $$$${then}\:\beta\:=\:{arctan}\left(\frac{\mathrm{4}{D}_{{u}} }{{D}_{{v}} }\right) \\ $$$${but}\:{cant}\:{find}\:{the}\:{proof}. \\ $$$${I}\:{would}\:{like}\:{to}\:{say}\:{would}\:{anyone}\:{like} \\ $$$${to}\:{proove}\:{it}?{then}\:{please}. \\ $$

Question Number 216485    Answers: 2   Comments: 0

Solve for x in: i^x = 2

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:\:\mathrm{in}:\:\:\:\mathrm{i}^{\mathrm{x}} \:\:=\:\:\mathrm{2} \\ $$

Question Number 216388    Answers: 1   Comments: 1

Question Number 216369    Answers: 2   Comments: 0

Question Number 216332    Answers: 4   Comments: 0

Question Number 216279    Answers: 1   Comments: 3

Question Number 216265    Answers: 0   Comments: 0

Question Number 216263    Answers: 0   Comments: 1

  Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com