Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 48

Question Number 169924    Answers: 0   Comments: 3

Question Number 170010    Answers: 1   Comments: 1

Question Number 169849    Answers: 1   Comments: 0

Question Number 169815    Answers: 1   Comments: 8

Question Number 169733    Answers: 1   Comments: 0

Question Number 169745    Answers: 2   Comments: 0

Question Number 169669    Answers: 1   Comments: 0

Question Number 169572    Answers: 1   Comments: 0

Question Number 169281    Answers: 0   Comments: 2

Question Number 169226    Answers: 0   Comments: 0

Question Number 169105    Answers: 1   Comments: 1

Question Number 169101    Answers: 1   Comments: 0

In AB^Δ C : m_b ^( 2) + m_c ^( 2) = 5 m_a ^( 2) prove that : A^( ∧) = 90^( °) m_a : ( median )

$$ \\ $$$$\:\:\:\:\:\:{In}\:\:{A}\overset{\Delta} {{B}C}\::\:\:\:\:{m}_{{b}} ^{\:\mathrm{2}} \:+\:{m}_{{c}} ^{\:\mathrm{2}} =\:\mathrm{5}\:{m}_{{a}} ^{\:\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:{prove}\:\:{that}\::\:\:\:\overset{\:\:\wedge} {{A}}\:=\:\mathrm{90}^{\:°} \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}_{{a}} :\:\:\left(\:{median}\:\right) \\ $$

Question Number 169038    Answers: 2   Comments: 1

Question Number 169009    Answers: 1   Comments: 10

Question Number 168946    Answers: 2   Comments: 1

Question Number 168926    Answers: 2   Comments: 2

Question Number 168830    Answers: 0   Comments: 1

Question Number 168801    Answers: 0   Comments: 6

Question Number 168737    Answers: 1   Comments: 1

Question Number 168497    Answers: 0   Comments: 1

Question Number 168489    Answers: 1   Comments: 1

Question Number 168471    Answers: 1   Comments: 1

Question Number 168347    Answers: 1   Comments: 4

Question Number 168206    Answers: 1   Comments: 0

Question Number 168094    Answers: 1   Comments: 0

Question Number 168085    Answers: 0   Comments: 1

  Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48      Pg 49      Pg 50      Pg 51      Pg 52   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com