Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 45

Question Number 181485    Answers: 2   Comments: 0

two medians of a triange are 3 and 4 cm respectively. find the maximum area of the triangle.

$${two}\:{medians}\:{of}\:{a}\:{triange}\:{are}\:\mathrm{3}\:{and} \\ $$$$\mathrm{4}\:{cm}\:{respectively}.\:{find}\:{the}\:{maximum} \\ $$$${area}\:{of}\:{the}\:{triangle}. \\ $$

Question Number 175199    Answers: 1   Comments: 0

Question Number 175188    Answers: 1   Comments: 0

Question Number 175176    Answers: 2   Comments: 0

Find the equation of the locus of points equidistant from the point A(4, −1) and the line x−y+2=0.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\: \\ $$$$\mathrm{points}\:\mathrm{equidistant}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point} \\ $$$${A}\left(\mathrm{4},\:−\mathrm{1}\right)\:\mathrm{and}\:\mathrm{the}\:\mathrm{line}\:{x}−{y}+\mathrm{2}=\mathrm{0}. \\ $$

Question Number 175172    Answers: 0   Comments: 0

Question Number 175166    Answers: 1   Comments: 0

Question Number 175149    Answers: 1   Comments: 0

Question Number 175045    Answers: 0   Comments: 5

In the figure ABCD is an square and BM=MC. If the area of PCD=14u. What is the value of: (1) Area of ABC; (2) Area of ABMP; (3) The area of ABCD

$${In}\:{the}\:{figure}\:{ABCD}\:{is}\:{an}\:{square}\:{and} \\ $$$${BM}={MC}.\:{If}\:{the}\:{area}\:{of}\:{PCD}=\mathrm{14}{u}.\: \\ $$$${What}\:{is}\:{the}\:{value}\:{of}: \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:{Area}\:{of}\:{ABC}; \\ $$$$\left(\mathrm{2}\right)\:{Area}\:{of}\:\:{ABMP}; \\ $$$$\left(\mathrm{3}\right)\:{The}\:{area}\:{of}\:{ABCD} \\ $$$$ \\ $$

Question Number 174888    Answers: 1   Comments: 0

Question Number 174776    Answers: 1   Comments: 0

Question Number 174763    Answers: 2   Comments: 0

Question Number 174751    Answers: 0   Comments: 0

Question Number 174664    Answers: 1   Comments: 0

Question Number 174599    Answers: 0   Comments: 0

Question Number 174485    Answers: 0   Comments: 0

Question Number 174370    Answers: 0   Comments: 1

Question Number 174340    Answers: 0   Comments: 0

Question Number 174315    Answers: 1   Comments: 0

Question Number 174283    Answers: 1   Comments: 1

Question Number 174218    Answers: 0   Comments: 0

Question Number 174185    Answers: 1   Comments: 0

The circle x^2 +y^2 −2x−4y−20=0 is inscribed in a square. One vertex of the square is (−4, 7). Find the coordinates of the other vertices.

$$\mathrm{The}\:\mathrm{circle}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{4}{y}−\mathrm{20}=\mathrm{0}\:\mathrm{is} \\ $$$$\mathrm{inscribed}\:\mathrm{in}\:\mathrm{a}\:\mathrm{square}.\:\mathrm{One}\:\mathrm{vertex} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{is}\:\left(−\mathrm{4},\:\mathrm{7}\right).\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{coordinates}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{vertices}. \\ $$

Question Number 181461    Answers: 0   Comments: 0

Question Number 181437    Answers: 2   Comments: 0

Question Number 181432    Answers: 1   Comments: 5

Question Number 174094    Answers: 1   Comments: 0

The circles x^2 +y^2 −2ax+8y+13=0 and x^2 +y^2 +2x+2by+1=0 are congruent. If they are 2(√(10)) units apart, find the possible values of a and b.

$$\mathrm{The}\:\mathrm{circles}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}+\mathrm{8}{y}+\mathrm{13}=\mathrm{0} \\ $$$$\mathrm{and}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2}{by}+\mathrm{1}=\mathrm{0}\:\mathrm{are}\: \\ $$$$\mathrm{congruent}.\:\mathrm{If}\:\mathrm{they}\:\mathrm{are}\:\mathrm{2}\sqrt{\mathrm{10}}\:\mathrm{units}\: \\ $$$$\mathrm{apart},\:\mathrm{find}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of} \\ $$$${a}\:\mathrm{and}\:{b}. \\ $$

Question Number 173827    Answers: 0   Comments: 0

  Pg 40      Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48      Pg 49   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com