Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 4

Question Number 213341    Answers: 2   Comments: 3

Question Number 213340    Answers: 0   Comments: 3

Question Number 211603    Answers: 3   Comments: 0

1.Given a regular tetrahedron ABCD with vertices A(0,0,0)B(a,0,0), C(0,a,0),and D(0,0,a).Calculate the volume V and the surface area S of this tetrahedron.

$$\mathrm{1}.\mathrm{Given}\:\mathrm{a}\:\mathrm{regular}\:\mathrm{tetrahedron}\:\boldsymbol{{ABCD}} \\ $$$$\mathrm{with}\:\mathrm{vertices}\:\boldsymbol{{A}}\left(\mathrm{0},\mathrm{0},\mathrm{0}\right)\boldsymbol{{B}}\left(\boldsymbol{{a}},\mathrm{0},\mathrm{0}\right), \\ $$$$\boldsymbol{{C}}\left(\mathrm{0},\boldsymbol{{a}},\mathrm{0}\right),\boldsymbol{\mathrm{and}}\:\boldsymbol{{D}}\left(\mathrm{0},\mathrm{0},\boldsymbol{{a}}\right).\mathrm{Calculate}\:\mathrm{the} \\ $$$$\:\mathrm{volume}\:\boldsymbol{{V}}\:\:\mathrm{and}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{area}\:\boldsymbol{{S}}\:\boldsymbol{\mathrm{of}} \\ $$$$\mathrm{this}\:\mathrm{tetrahedron}. \\ $$

Question Number 211537    Answers: 3   Comments: 0

Question Number 211340    Answers: 2   Comments: 1

Question Number 211323    Answers: 2   Comments: 1

Question Number 211265    Answers: 0   Comments: 0

Question Number 211235    Answers: 2   Comments: 1

Question Number 211232    Answers: 1   Comments: 0

Question Number 211277    Answers: 0   Comments: 4

Question Number 211188    Answers: 1   Comments: 0

Question Number 211190    Answers: 3   Comments: 0

Question Number 211167    Answers: 2   Comments: 1

Question Number 211145    Answers: 1   Comments: 3

Question Number 211127    Answers: 0   Comments: 7

Two circles are assumed that have the same center. How many circles are there that are tangent to both circles and pass through the assumed point?

$$ \\ $$Two circles are assumed that have the same center. How many circles are there that are tangent to both circles and pass through the assumed point?

Question Number 211118    Answers: 0   Comments: 3

Question Number 211079    Answers: 1   Comments: 0

Question Number 211058    Answers: 1   Comments: 1

Question Number 211016    Answers: 3   Comments: 1

Question Number 210948    Answers: 2   Comments: 1

Question Number 210935    Answers: 2   Comments: 0

at what times, if exist, are the angles betwen the hour hand, the minute hand and the second hand of a clock exactly 120°? assume that the hands of the clock move uniformly.

$${at}\:{what}\:{times},\:{if}\:{exist},\:{are}\:{the}\: \\ $$$${angles}\:{betwen}\:{the}\:{hour}\:{hand},\:{the} \\ $$$${minute}\:{hand}\:{and}\:{the}\:{second}\:{hand} \\ $$$${of}\:{a}\:{clock}\:{exactly}\:\mathrm{120}°? \\ $$$${assume}\:{that}\:{the}\:{hands}\:{of}\:{the}\:{clock} \\ $$$${move}\:{uniformly}. \\ $$

Question Number 210761    Answers: 2   Comments: 7

Question Number 210695    Answers: 1   Comments: 1

Question Number 210694    Answers: 1   Comments: 0

Question Number 210688    Answers: 0   Comments: 1

In a convex quadrilateral ABCD, diagonals AC and BD intersect at E, while perpendicular bisectors of AB and CD intersect at F, and those of BC and DA intersect at G. Prove: (1) E, F, and G are collinear, (2) AE:EC = BF:FD, and (3) CG:GD = AF:FB.

$$ \\ $$In a convex quadrilateral ABCD, diagonals AC and BD intersect at E, while perpendicular bisectors of AB and CD intersect at F, and those of BC and DA intersect at G. Prove: (1) E, F, and G are collinear, (2) AE:EC = BF:FD, and (3) CG:GD = AF:FB.

Question Number 210687    Answers: 0   Comments: 2

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com