Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 115

Question Number 3607    Answers: 1   Comments: 0

Construct a line segment of a^2 units using ruler and compass only, when a line segment of a units is given.

$${Construct}\:{a}\:{line}\:{segment}\:{of}\:\boldsymbol{{a}}^{\mathrm{2}} \:{units}\: \\ $$$${using}\:{ruler}\:{and}\:\:{compass}\:{only},\:{when} \\ $$$${a}\:{line}\:{segment}\:{of}\:\boldsymbol{{a}}\:{units}\:{is}\:{given}. \\ $$

Question Number 3348    Answers: 1   Comments: 3

Prove that the regular pentagon is possible with ruler and compass.

$${Prove}\:{that}\:{the}\:{regular}\:{pentagon} \\ $$$${is}\:{possible}\:{with}\:{ruler}\:{and}\:{compass}. \\ $$

Question Number 3280    Answers: 3   Comments: 0

For a triangle with perpandicular height h and base length b, the area of the triangle is given by: A=(1/2)hb Why is this the case? I understand that two identicle triangles can construct a rectangle, so the area is half of the area of its rectangle with lengths and height b and h Is there any other reasoning?

$$\mathrm{For}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{perpandicular} \\ $$$$\mathrm{height}\:{h}\:\mathrm{and}\:\mathrm{base}\:\mathrm{length}\:{b},\:\mathrm{the}\: \\ $$$$\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}: \\ $$$${A}=\frac{\mathrm{1}}{\mathrm{2}}{hb} \\ $$$$ \\ $$$$\mathrm{Why}\:\mathrm{is}\:\mathrm{this}\:\mathrm{the}\:\mathrm{case}? \\ $$$$\mathrm{I}\:\mathrm{understand}\:\mathrm{that}\:\mathrm{two}\:\mathrm{identicle}\:\mathrm{triangles} \\ $$$$\mathrm{can}\:\mathrm{construct}\:\mathrm{a}\:{rectangle},\:\mathrm{so}\:\mathrm{the}\:\mathrm{area} \\ $$$$\mathrm{is}\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{its}\:\mathrm{rectangle}\:\mathrm{with} \\ $$$$\mathrm{lengths}\:\mathrm{and}\:\mathrm{height}\:{b}\:\mathrm{and}\:{h} \\ $$$$ \\ $$$$\mathrm{Is}\:\mathrm{there}\:\mathrm{any}\:\mathrm{other}\:\mathrm{reasoning}? \\ $$

Question Number 3262    Answers: 0   Comments: 4

Could ^3 (√2) be drawn on numbered line with the help of ruler and compass only?

$$\mathcal{C}{ould}\:\:^{\mathrm{3}} \sqrt{\mathrm{2}}\:\:{be}\:{drawn}\:{on}\:{numbered}\:{line}\:{with}\: \\ $$$${the}\:{help}\:\:{of}\:\:{ruler}\:{and}\:{compass}\:{only}? \\ $$

Question Number 3249    Answers: 1   Comments: 0

How could (√5) be drawn on numbered line using scale and compass only? (Exactly (√5) not its decimal approximation.)

$$\mathcal{H}{ow}\:{could}\:\sqrt{\mathrm{5}}\:\:{be}\:{drawn}\:{on}\:{numbered}\:{line}\:{using} \\ $$$${scale}\:{and}\:{compass}\:{only}?\:\left({Exactly}\:\sqrt{\mathrm{5}}\:{not}\:{its}\:{decimal}\:{approximation}.\right) \\ $$

Question Number 3304    Answers: 0   Comments: 9

Bring up the topic/challenge started by Filup at the top. Shall we start new topic at the beginning of calendar month? See older post dt 24.11 by Filup

$$\mathrm{Bring}\:\mathrm{up}\:\mathrm{the}\:\mathrm{topic}/\mathrm{challenge}\:\mathrm{started}\:\mathrm{by}\:\mathrm{Filup}\:\mathrm{at}\:\mathrm{the}\:\mathrm{top}. \\ $$$$\mathrm{Shall}\:\mathrm{we}\:\mathrm{start}\:\mathrm{new}\:\mathrm{topic}\:\mathrm{at}\:\mathrm{the}\:\mathrm{beginning} \\ $$$$\mathrm{of}\:\mathrm{calendar}\:\mathrm{month}? \\ $$$$\mathrm{See}\:\mathrm{older}\:\mathrm{post}\:\mathrm{dt}\:\mathrm{24}.\mathrm{11}\:\mathrm{by}\:\mathrm{Filup} \\ $$

Question Number 3055    Answers: 2   Comments: 0

Given a set S={a_1 , ..., a_n } a_k ∈Z a_1 =a, a_n =a_(n−1) +1, a_n =b ∴S contains all integers between a and b. Are there more even or odd values?

$$\mathrm{Given}\:\mathrm{a}\:\mathrm{set}\:\:{S}=\left\{{a}_{\mathrm{1}} ,\:...,\:{a}_{{n}} \right\} \\ $$$${a}_{{k}} \in\mathbb{Z} \\ $$$$ \\ $$$${a}_{\mathrm{1}} ={a},\:\:\:{a}_{{n}} ={a}_{{n}−\mathrm{1}} +\mathrm{1},\:\:\:{a}_{{n}} ={b} \\ $$$$ \\ $$$$\therefore{S}\:\mathrm{contains}\:\mathrm{all}\:\mathrm{integers}\:\mathrm{between} \\ $$$${a}\:\mathrm{and}\:{b}. \\ $$$$ \\ $$$$\mathrm{Are}\:\mathrm{there}\:\mathrm{more}\:\mathrm{even}\:\mathrm{or}\:\mathrm{odd}\:\mathrm{values}? \\ $$

Question Number 2795    Answers: 2   Comments: 0

Prove that (1+x+x^2 +...)(1+2x+3x^2 +...) =(1/2)(1.2+2.3x+3.4x^2 +...)

$${Prove}\:{that} \\ $$$$\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +...\right)\left(\mathrm{1}+\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} +...\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}.\mathrm{2}+\mathrm{2}.\mathrm{3}{x}+\mathrm{3}.\mathrm{4}{x}^{\mathrm{2}} +...\right) \\ $$

Question Number 2499    Answers: 1   Comments: 2

ABCD.EFGH is cube, X is midpoint EF if AB = 6 cm, how distance AX to BD??

$${ABCD}.{EFGH}\:{is}\:{cube},\:{X}\:{is}\:{midpoint}\:{EF} \\ $$$${if}\:{AB}\:=\:\mathrm{6}\:{cm},\:{how}\:{distance}\:{AX}\:{to}\:{BD}?? \\ $$

Question Number 2466    Answers: 3   Comments: 0

(√(−(1/5) ))−(1/(√(−5)))=?

$$\sqrt{−\frac{\mathrm{1}}{\mathrm{5}}\:}−\frac{\mathrm{1}}{\sqrt{−\mathrm{5}}}=? \\ $$

Question Number 2458    Answers: 1   Comments: 0

The medians of a triangle are m_1 , m_2 , m_3 . Find the length of each sides the triangle.

$${The}\:{medians}\:{of}\:{a}\:{triangle} \\ $$$${are}\:{m}_{\mathrm{1}} ,\:{m}_{\mathrm{2}} ,\:{m}_{\mathrm{3}} . \\ $$$${Find}\:{the}\:{length}\:{of}\:{each}\:{sides}\: \\ $$$${the}\:{triangle}. \\ $$

Question Number 2329    Answers: 0   Comments: 3

a_n =(−1)^n (⌊(n/9)⌋+1) Σ_(n≥0) a_n =? b_n =(((a_n −1)(9−a_n ))/(n+1)) Σ_(n≥0) b_n =?

$${a}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \left(\lfloor\frac{{n}}{\mathrm{9}}\rfloor+\mathrm{1}\right) \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\sum}{a}_{{n}} =? \\ $$$${b}_{{n}} =\frac{\left({a}_{{n}} −\mathrm{1}\right)\left(\mathrm{9}−{a}_{{n}} \right)}{{n}+\mathrm{1}} \\ $$$$\underset{{n}\geqslant\mathrm{0}} {\sum}{b}_{{n}} =? \\ $$

Question Number 2196    Answers: 1   Comments: 0

(a+b)^2 =a^2 +b^2 +2ab (a+b+c)^2 =a^2 +b^2 +c^2 +2ab+2bc+2ca (a+b+c+d)^2 =? (a_1 +a_2 +...+a_n )^2 =? Derive a formula or give a technique.

$$\left({a}+{b}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{2}{ab} \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +\mathrm{2}{ab}+\mathrm{2}{bc}+\mathrm{2}{ca} \\ $$$$\left({a}+{b}+{c}+{d}\right)^{\mathrm{2}} =? \\ $$$$\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...+{a}_{{n}} \right)^{\mathrm{2}} =? \\ $$$${Derive}\:{a}\:{formula}\:{or}\:{give}\:{a}\:{technique}. \\ $$

Question Number 2138    Answers: 0   Comments: 8

Is the following proof correct? Δ=Σ_(i=0) ^∞ (−1)^i 2^i =1−2+4−8+16−32+... Let: Δ_1 =1−2+4−8+16−32+... Δ_2 = 1−2+4−8+16−32+... Δ_1 +Δ_2 =1+(−2+1)+(4−2)+(−8+4)+... ∴Δ_1 +Δ_2 =1−(1−2+4−8+...) ∴Δ_1 +Δ_2 =1−Δ_1 Δ_1 =Δ_2 =Δ 3Δ=1 ∴Δ=(1/3) ∴Δ=Σ_(i=0) ^∞ (−1)^i 2^i =(1/3)

$$\mathrm{Is}\:\mathrm{the}\:\mathrm{following}\:\mathrm{proof}\:\mathrm{correct}? \\ $$$$ \\ $$$$\Delta=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{i}} \mathrm{2}^{{i}} =\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+... \\ $$$$ \\ $$$$\mathrm{Let}: \\ $$$$\Delta_{\mathrm{1}} =\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+... \\ $$$$\Delta_{\mathrm{2}} =\:\:\:\:\:\:\:\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+\mathrm{16}−\mathrm{32}+... \\ $$$$ \\ $$$$\Delta_{\mathrm{1}} +\Delta_{\mathrm{2}} =\mathrm{1}+\left(−\mathrm{2}+\mathrm{1}\right)+\left(\mathrm{4}−\mathrm{2}\right)+\left(−\mathrm{8}+\mathrm{4}\right)+... \\ $$$$\therefore\Delta_{\mathrm{1}} +\Delta_{\mathrm{2}} =\mathrm{1}−\left(\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{8}+...\right) \\ $$$$\therefore\Delta_{\mathrm{1}} +\Delta_{\mathrm{2}} =\mathrm{1}−\Delta_{\mathrm{1}} \\ $$$$\Delta_{\mathrm{1}} =\Delta_{\mathrm{2}} =\Delta \\ $$$$\mathrm{3}\Delta=\mathrm{1} \\ $$$$\therefore\Delta=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$ \\ $$$$\therefore\Delta=\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{i}} \mathrm{2}^{{i}} =\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$ \\ $$

Question Number 1999    Answers: 1   Comments: 0

if (1 + tan 1°)(1 + tan 2°)(1 + tan 3°)...... ....)(1 + tan 44°)(1 + tan 45°) ^ = { ((((√(50)) + 7)))^(1/3) − ((((√(50))−7)))^(1/3) }^((x − 7)) find x = ...?

$${if}\: \\ $$$$\left(\mathrm{1}\:+\:{tan}\:\mathrm{1}°\right)\left(\mathrm{1}\:+\:{tan}\:\mathrm{2}°\right)\left(\mathrm{1}\:+\:{tan}\:\mathrm{3}°\right)...... \\ $$$$\left.....\right)\left(\mathrm{1}\:+\:{tan}\:\mathrm{44}°\right)\left(\mathrm{1}\:+\:{tan}\:\mathrm{45}°\right)\overset{} {\:}=\:\:\left\{\:\:\:\sqrt[{\mathrm{3}}]{\left(\sqrt{\mathrm{50}}\:+\:\mathrm{7}\right)}\:−\:\sqrt[{\mathrm{3}}]{\left(\sqrt{\mathrm{50}}−\mathrm{7}\right)}\:\overset{\left({x}\:−\:\mathrm{7}\right)} {\right\}} \\ $$$$\: \\ $$$${find}\:{x}\:=\:...? \\ $$

Question Number 2001    Answers: 0   Comments: 0

Prove that : (1/(15)) < (1/2) ∙ (3/4) ∙ (5/6) ∙ ∙ ∙ ∙ ∙ ((99)/(100)) < (1/(10))

$${Prove}\:{that}\:: \\ $$$$\frac{\mathrm{1}}{\mathrm{15}}\:<\:\frac{\mathrm{1}}{\mathrm{2}}\:\centerdot\:\frac{\mathrm{3}}{\mathrm{4}}\:\centerdot\:\frac{\mathrm{5}}{\mathrm{6}}\:\centerdot\:\centerdot\:\centerdot\:\centerdot\:\centerdot\:\frac{\mathrm{99}}{\mathrm{100}}\:<\:\frac{\mathrm{1}}{\mathrm{10}} \\ $$

Question Number 1928    Answers: 2   Comments: 10

Prove that, if p>q>0 and x≥0, then (1/p)((x^p /(p+1))−1)≥(1/q)((x^q /(q+1))−1).

$${Prove}\:{that},\:{if}\:{p}>{q}>\mathrm{0}\:{and}\:{x}\geqslant\mathrm{0},\:{then} \\ $$$$\:\:\:\:\:\frac{\mathrm{1}}{{p}}\left(\frac{{x}^{{p}} }{{p}+\mathrm{1}}−\mathrm{1}\right)\geqslant\frac{\mathrm{1}}{{q}}\left(\frac{{x}^{{q}} }{{q}+\mathrm{1}}−\mathrm{1}\right).\: \\ $$

Question Number 1793    Answers: 0   Comments: 0

Evaluate ∫_(1/2) ^2 ((sinx)/(x(sinx+sin(1/x))))dx .

$${Evaluate}\: \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{1}/\mathrm{2}} ^{\mathrm{2}} \frac{{sinx}}{{x}\left({sinx}+{sin}\frac{\mathrm{1}}{{x}}\right)}{dx}\:. \\ $$

Question Number 1740    Answers: 1   Comments: 1

how 0!=1

$${how}\:\:\mathrm{0}!=\mathrm{1} \\ $$

Question Number 1750    Answers: 1   Comments: 0

(x+3)^3

$$\left({x}+\mathrm{3}\right)^{\mathrm{3}} \\ $$

Question Number 1611    Answers: 0   Comments: 1

A right angled triangle has fixed hypotenuse measuring h units. What are the measures of its legs, for maximum perimeter P units. Will the area be also maximum, when the perimeter be maximum?

$$\mathrm{A}\:\mathrm{right}\:\mathrm{angled}\:\mathrm{triangle}\:\mathrm{has}\:\mathrm{fixed}\:\mathrm{hypotenuse}\:\mathrm{measuring} \\ $$$$\mathrm{h}\:\mathrm{units}.\:\mathrm{What}\:\mathrm{are}\:\mathrm{the}\:\mathrm{measures}\:\:\mathrm{of}\:\mathrm{its}\:\mathrm{legs}, \\ $$$$\mathrm{for}\:\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{perimeter}}\:\mathrm{P}\:\mathrm{units}. \\ $$$$\mathrm{Will}\:\mathrm{the}\:\mathrm{area}\:\mathrm{be}\:\mathrm{also}\:\mathrm{maximum},\:\mathrm{when}\:\mathrm{the}\:\mathrm{perimeter}\:\mathrm{be} \\ $$$$\mathrm{maximum}? \\ $$

Question Number 1592    Answers: 1   Comments: 1

I have a loop of string of length(perimeter) p units. I want to make a triangle of largest area from the loop. What will be the dimensions of that triangle?

$$\mathrm{I}\:\mathrm{have}\:\mathrm{a}\:\mathrm{loop}\:\mathrm{of}\:\mathrm{string}\:\mathrm{of}\:\mathrm{length}\left(\mathrm{perimeter}\right)\:\:\mathrm{p}\:\mathrm{units}.\: \\ $$$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{make}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{of}\:\mathrm{largest}\:\mathrm{area}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{loop}.\:\mathrm{What}\:\mathrm{will}\:\mathrm{be}\:\mathrm{the}\:\mathrm{dimensions}\:\mathrm{of}\:\mathrm{that}\:\mathrm{triangle}? \\ $$

Question Number 1581    Answers: 0   Comments: 2

Find a function f(x) satisfying the following equation. ∫_a ^( b) [(1/2){f(x)}^2 −(√({f(x)}^2 +{(d/dx)(f(x))}^2 ))]dx=0 b>0,a>0 , b≠a.

$${Find}\:{a}\:{function}\:{f}\left({x}\right)\:{satisfying} \\ $$$${the}\:{following}\:{equation}. \\ $$$$\int_{{a}} ^{\:{b}} \left[\frac{\mathrm{1}}{\mathrm{2}}\left\{{f}\left({x}\right)\right\}^{\mathrm{2}} −\sqrt{\left\{{f}\left({x}\right)\right\}^{\mathrm{2}} +\left\{\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)\right\}^{\mathrm{2}} }\right]{dx}=\mathrm{0} \\ $$$${b}>\mathrm{0},{a}>\mathrm{0}\:,\:{b}\neq{a}.\:\: \\ $$

Question Number 1387    Answers: 0   Comments: 1

Q. is there any angle in a circle?

$${Q}.\:{is}\:{there}\:{any}\:{angle}\:{in}\:{a}\:{circle}? \\ $$

Question Number 1395    Answers: 0   Comments: 5

Consider quadrilateral ABCD same as in Q 1378 with same conditions/restrictions (Pl refer the Question again). • What could be possible minimum and maximum area of the quadrilateral? •When qusdrilateral has minimum area what is the value/s of m∠A? Similarly what is value/s of m∠A in case of maximum area?

$$\:\:\:\:\:\:\:\:\:\:\mathrm{C}{onsider}\:\boldsymbol{\mathrm{quadrilateral}}\:\boldsymbol{\mathrm{ABCD}}\:\:{same}\:{as}\:{in}\:{Q}\:\mathrm{1378}\:{with}\: \\ $$$${same}\:{conditions}/{restrictions}\:\left({Pl}\:\:{refer}\:\:{the}\:{Question}\:{again}\right). \\ $$$$\:\:\:\:\:\:\:\:\:\:\bullet\:{What}\:{could}\:{be}\:{possible}\:\boldsymbol{\mathrm{minimum}}\:{and}\:\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{area}} \\ $$$${of}\:{the}\:{quadrilateral}? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\bullet{When}\:{qusdrilateral}\:{has}\:\boldsymbol{\mathrm{minimum}}\:\boldsymbol{\mathrm{area}}\:{what}\:{is}\:{the}\:{value}/{s} \\ $$$${of}\:\boldsymbol{{m}}\angle\boldsymbol{\mathrm{A}}?\:{Similarly}\:{what}\:{is}\:{value}/{s}\:\:{of}\:\boldsymbol{{m}}\angle\boldsymbol{\mathrm{A}}\:{in}\:{case}\:{of} \\ $$$$\boldsymbol{\mathrm{maximum}}\:\boldsymbol{\mathrm{area}}? \\ $$$$ \\ $$

Question Number 1378    Answers: 0   Comments: 4

Four sides mAB^(−) , mBC^(−) , mCD^(−) and mDA^(−) of a quadrilateral ABCD have measurement a , b , c and d units respectively. Let the sum of any adjacent sides is not equal to the sum of remaining adjacent sides and measurement of all the sides is positive and real. What could be the possible minimum and maximum values of its one angle m∠A ?

$$\:\:\:\:\:{Four}\:{sides}\:{m}\overline {\boldsymbol{\mathrm{AB}}}\:,\:{m}\overline {\boldsymbol{\mathrm{BC}}}\:,\:{m}\overline {\boldsymbol{\mathrm{CD}}}\:\:{and}\:\:{m}\overline {\boldsymbol{\mathrm{DA}}}\:{of}\:{a}\:\boldsymbol{\mathrm{quadrilateral}}\: \\ $$$$\boldsymbol{\mathrm{ABCD}}\:\:{have}\:{measurement}\:\boldsymbol{{a}}\:,\:\boldsymbol{{b}}\:,\:\boldsymbol{{c}}\:\:{and}\:\boldsymbol{{d}}\:{units}\:{respectively}. \\ $$$$\:\:\:\:\:{Let}\:{the}\:{sum}\:{of}\:{any}\:{adjacent}\:{sides}\:{is}\:{not}\:{equal}\:{to}\:{the}\:{sum}\:{of} \\ $$$${remaining}\:{adjacent}\:{sides}\:\:{and}\:{measurement}\:{of}\:{all}\:{the}\:{sides}\: \\ $$$${is}\:{positive}\:{and}\:{real}. \\ $$$$\:\:\:\:\:\:{What}\:{could}\:{be}\:{the}\:{possible}\:{minimum}\:{and}\:{maximum}\:{values} \\ $$$${of}\:{its}\:{one}\:{angle}\:\:{m}\angle\boldsymbol{\mathrm{A}}\:? \\ $$

  Pg 110      Pg 111      Pg 112      Pg 113      Pg 114      Pg 115      Pg 116      Pg 117      Pg 118      Pg 119   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com