Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 114

Question Number 13236    Answers: 0   Comments: 16

For positive a,b,c such that a b c=1 show that a^(b+c) b^(c+a) c^(a+b) ≤1 solution: a^(b+c) b^(c+a) c^(a+b) =(a^b a^c b^c b^a c^a c^b ) =(b×c)^a (a×c)^b (a×b)^c =(a^0 ×b×c)^a (a×b^0 ×c)^b (a×b×c^0 )^c ≤(a×b×c)^(a ) (a×b^ × c)^b (a×b×c)^c ≤(1)^a (1)^b (1)^c ;since a b c=1 ≤1

$${For}\:{positive}\:\:{a},{b},{c}\:\:{such}\:{that}\:\:{a}\:{b}\:{c}=\mathrm{1} \\ $$$${show}\:{that}\:\:{a}^{{b}+{c}} \:\:{b}^{{c}+{a}} \:\:{c}^{{a}+{b}} \:\leqslant\mathrm{1} \\ $$$${solution}: \\ $$$${a}^{{b}+{c}} \:\:{b}^{{c}+{a}} \:\:{c}^{{a}+{b}} \:=\left({a}^{{b}} {a}^{{c}} \:{b}^{{c}} {b}^{{a}} \:\:{c}^{{a}} {c}^{{b}} \right) \\ $$$$\:\:\:\:\:\:=\left({b}×{c}\right)^{{a}} \:\left({a}×{c}\right)^{{b}} \:\left({a}×{b}\right)^{{c}} \\ $$$$\:\:\:\:\:\:\:=\left({a}^{\mathrm{0}} ×{b}×{c}\right)^{{a}} \:\left({a}×{b}^{\mathrm{0}} ×{c}\right)^{{b}} \left({a}×{b}×{c}^{\mathrm{0}} \right)^{{c}} \\ $$$$\:\:\:\:\:\:\:\leqslant\left({a}×{b}×{c}\right)^{{a}\:\:\:\:} \left({a}×{b}^{} ×\:{c}\right)^{{b}} \:\left({a}×{b}×{c}\right)^{{c}} \\ $$$$\:\:\:\:\:\:\:\leqslant\left(\mathrm{1}\right)^{{a}} \:\left(\mathrm{1}\right)^{{b}} \:\left(\mathrm{1}\right)^{{c}} \:\:\:\:;{since}\:\:{a}\:{b}\:{c}=\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\leqslant\mathrm{1} \\ $$

Question Number 13228    Answers: 0   Comments: 5

Question Number 13127    Answers: 0   Comments: 0

Question Number 13067    Answers: 0   Comments: 4

Question Number 13005    Answers: 1   Comments: 0

using De Moivre theorem solve the equation (x+1)^5 +(x−1)^5 =0

$${using}\:{De}\:{Moivre}\:{theorem}\:{solve}\:{the}\:{equation}\:\left({x}+\mathrm{1}\right)^{\mathrm{5}} +\left({x}−\mathrm{1}\right)^{\mathrm{5}} =\mathrm{0} \\ $$

Question Number 12875    Answers: 0   Comments: 3

Question Number 12846    Answers: 2   Comments: 1

Question Number 12822    Answers: 1   Comments: 0

prove by contradiction 9+13(√(3 )) is irrational

$${prove}\:{by}\:{contradiction}\:\mathrm{9}+\mathrm{13}\sqrt{\mathrm{3}\:} \\ $$$${is}\:{irrational} \\ $$

Question Number 12725    Answers: 3   Comments: 4

Question Number 12569    Answers: 0   Comments: 0

tank you

$${tank}\:{you} \\ $$

Question Number 12566    Answers: 1   Comments: 0

we give U_1 ,U_2 ,U_3 the terms of a geometric sequence .Determine U_1 ,U_2 ,U_3 such that : { ((U_1 .U_2 .U_3 =64)),((U_1 ^2 +U_2 ^2 +U_3 ^2 =84)) :}

$${we}\:{give}\:{U}_{\mathrm{1}} ,{U}_{\mathrm{2}} ,{U}_{\mathrm{3}} \:{the}\:{terms}\:{of}\:{a}\:{geometric}\:{sequence} \\ $$$$.{Determine}\:{U}_{\mathrm{1}} ,{U}_{\mathrm{2}} ,{U}_{\mathrm{3}} \:{such}\:{that}\:: \\ $$$$ \\ $$$$\begin{cases}{{U}_{\mathrm{1}} .{U}_{\mathrm{2}} .{U}_{\mathrm{3}} =\mathrm{64}}\\{{U}_{\mathrm{1}} ^{\mathrm{2}} +{U}_{\mathrm{2}} ^{\mathrm{2}} +{U}_{\mathrm{3}} ^{\mathrm{2}} =\mathrm{84}}\end{cases} \\ $$$$ \\ $$

Question Number 12553    Answers: 0   Comments: 0

Using Laplace Transform, solve f(t) = ((sin 3t)/t)

$$\mathrm{Using}\:\mathrm{Laplace}\:\mathrm{Transform},\:\mathrm{solve} \\ $$$${f}\left({t}\right)\:=\:\frac{\mathrm{sin}\:\mathrm{3}{t}}{{t}} \\ $$

Question Number 12534    Answers: 1   Comments: 0

please help me .How can resolve this system? {_((1+(√2))x+y=1) ^(x^2 +y^2 =1)

$${please}\:{help}\:{me}\:.{How}\:{can}\:{resolve}\:{this}\:{system}? \\ $$$$\left\{_{\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){x}+{y}=\mathrm{1}} ^{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}} \right. \\ $$

Question Number 12506    Answers: 2   Comments: 0

A wooden stick was broken randomly into three pieces. What is the probability that a triangle can be built from those three parts?

$$\mathrm{A}\:\mathrm{wooden}\:\mathrm{stick}\:\mathrm{was}\:\mathrm{broken}\:\mathrm{randomly}\:\mathrm{into} \\ $$$$\mathrm{three}\:\mathrm{pieces}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{probability}\:\mathrm{that}\:\mathrm{a}\:\mathrm{triangle} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{built}\:\mathrm{from}\:\mathrm{those}\:\mathrm{three}\:\mathrm{parts}? \\ $$

Question Number 12490    Answers: 0   Comments: 1

328976/256

$$\mathrm{328976}/\mathrm{256} \\ $$

Question Number 12499    Answers: 1   Comments: 0

Water flows out of a tank through a hole of diameter 2cm above the hole (1) Determine the velocity of outflow (2) The rate of outflow when the level of the water in the tank is 2cm above the hole.

$$\mathrm{Water}\:\mathrm{flows}\:\mathrm{out}\:\mathrm{of}\:\mathrm{a}\:\mathrm{tank}\:\mathrm{through}\:\mathrm{a}\:\mathrm{hole}\:\mathrm{of}\:\mathrm{diameter}\:\mathrm{2cm}\:\mathrm{above}\:\mathrm{the}\:\mathrm{hole} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{outflow} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{The}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{outflow}\:\mathrm{when}\:\mathrm{the}\:\mathrm{level}\:\mathrm{of}\:\mathrm{the}\:\mathrm{water}\:\mathrm{in}\:\mathrm{the}\:\mathrm{tank}\:\mathrm{is}\:\mathrm{2cm}\:\mathrm{above} \\ $$$$\mathrm{the}\:\mathrm{hole}.\: \\ $$

Question Number 12371    Answers: 0   Comments: 0

tank you

$${tank}\:{you} \\ $$$$ \\ $$

Question Number 12332    Answers: 2   Comments: 7

prove ; ((0/0))=2

$$\mathrm{prove}\:;\:\left(\frac{\mathrm{0}}{\mathrm{0}}\right)=\mathrm{2} \\ $$

Question Number 12267    Answers: 2   Comments: 0

Find the nth term of the sequence 1) (1/3) , (1/(15)) , (1/(35)) , (1/(63)) , (1/(99)) 2) (1/2), (1/6), (1/(12)), (1/(20)), (1/(30))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sequence} \\ $$$$\left.\mathrm{1}\right)\:\:\:\frac{\mathrm{1}}{\mathrm{3}}\:,\:\frac{\mathrm{1}}{\mathrm{15}}\:,\:\frac{\mathrm{1}}{\mathrm{35}}\:,\:\frac{\mathrm{1}}{\mathrm{63}}\:,\:\frac{\mathrm{1}}{\mathrm{99}} \\ $$$$\left.\mathrm{2}\right)\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}},\:\frac{\mathrm{1}}{\mathrm{6}},\:\frac{\mathrm{1}}{\mathrm{12}},\:\frac{\mathrm{1}}{\mathrm{20}},\:\frac{\mathrm{1}}{\mathrm{30}} \\ $$

Question Number 12265    Answers: 0   Comments: 2

Determinant method can be used to solve the system below?, if yes solve by determinant method and if no solve by another method x+y−z=8 2x+y−2z=3 (give clear reason for your answer)

$${Determinant}\:{method}\:{can}\:{be}\:{used}\:{to}\:{solve} \\ $$$${the}\:{system}\:{below}?,\:\mathrm{if}\:\mathrm{yes}\:\mathrm{solve}\:\mathrm{by}\:\mathrm{determinant}\:\mathrm{method}\:\mathrm{and} \\ $$$$\:\mathrm{if}\:\mathrm{no}\:\mathrm{solve}\:\mathrm{by}\:\mathrm{another}\:\mathrm{method} \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$${x}+{y}−{z}=\mathrm{8} \\ $$$$\mathrm{2}{x}+{y}−\mathrm{2}{z}=\mathrm{3} \\ $$$$\left({give}\:{clear}\:{reason}\:{for}\:{your}\:{answer}\right) \\ $$

Question Number 12148    Answers: 0   Comments: 13

Question Number 12131    Answers: 0   Comments: 0

a cube has a rib ABCD.EFGH, the midle point P on BF so that BP = PF, and the midle point Q on FG so that FQ = QG how long projection point C to APQH field ?

$${a}\:{cube}\:{has}\:{a}\:{rib}\:{ABCD}.{EFGH},\:{the}\:{midle}\:{point}\:{P}\:\:{on}\:{BF}\:{so}\:{that}\:{BP}\:=\:{PF}, \\ $$$${and}\:{the}\:{midle}\:{point}\:{Q}\:{on}\:{FG}\:{so}\:{that}\:{FQ}\:=\:{QG} \\ $$$${how}\:{long}\:{projection}\:{point}\:{C}\:{to}\:{APQH}\:{field}\:? \\ $$

Question Number 12045    Answers: 1   Comments: 0

how much matrices of integers number A= [(a,b),(c,d) ]if A^2 =I and b=c

$${how}\:{much}\:{matrices}\:{of}\:{integers}\:{number} \\ $$$${A}=\begin{bmatrix}{{a}}&{{b}}\\{{c}}&{{d}}\end{bmatrix}{if}\:{A}^{\mathrm{2}} ={I}\:{and}\:{b}={c} \\ $$

Question Number 12019    Answers: 1   Comments: 0

Question Number 12013    Answers: 1   Comments: 0

The slope of a curve is, 7x + 3 and it passes through the point (2, 4), Find the equation of the point

$$\mathrm{The}\:\mathrm{slope}\:\mathrm{of}\:\mathrm{a}\:\mathrm{curve}\:\mathrm{is},\:\mathrm{7x}\:+\:\mathrm{3}\:\:\mathrm{and}\:\mathrm{it}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{2},\:\mathrm{4}\right), \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point} \\ $$

Question Number 12008    Answers: 1   Comments: 1

  Pg 109      Pg 110      Pg 111      Pg 112      Pg 113      Pg 114      Pg 115      Pg 116      Pg 117      Pg 118   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com