Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 108

Question Number 16483    Answers: 0   Comments: 12

Question Number 16464    Answers: 0   Comments: 2

Question Number 16409    Answers: 3   Comments: 9

Question Number 16364    Answers: 1   Comments: 0

Question Number 16441    Answers: 1   Comments: 2

Question Number 16302    Answers: 1   Comments: 5

Related to Q16140 What if the three lines d_1 ,d_2 ,d_3 are not parallel, but concurrent?

$$\mathrm{Related}\:\mathrm{to}\:\mathrm{Q16140} \\ $$$$\mathrm{What}\:\mathrm{if}\:\mathrm{the}\:\mathrm{three}\:\mathrm{lines}\:\mathrm{d}_{\mathrm{1}} ,\mathrm{d}_{\mathrm{2}} ,\mathrm{d}_{\mathrm{3}} \:\mathrm{are} \\ $$$$\mathrm{not}\:\mathrm{parallel},\:\mathrm{but}\:\mathrm{concurrent}? \\ $$

Question Number 16277    Answers: 3   Comments: 1

Question Number 16226    Answers: 0   Comments: 1

Question Number 16214    Answers: 2   Comments: 4

In ΔABC, r_1 , r_2 and r_3 are the exradii as shown. Prove that r_1 = (Δ/(s − a)) , r_2 = (Δ/(s − b)) and r_3 = (Δ/(s − c)) . Here s = ((a + b + c)/2) .

$$\mathrm{In}\:\Delta{ABC},\:{r}_{\mathrm{1}} ,\:{r}_{\mathrm{2}} \:\mathrm{and}\:{r}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{exradii} \\ $$$$\mathrm{as}\:\mathrm{shown}.\:\mathrm{Prove}\:\mathrm{that}\:{r}_{\mathrm{1}} \:=\:\frac{\Delta}{{s}\:−\:{a}}\:, \\ $$$${r}_{\mathrm{2}} \:=\:\frac{\Delta}{{s}\:−\:{b}}\:\mathrm{and}\:{r}_{\mathrm{3}} \:=\:\frac{\Delta}{{s}\:−\:{c}}\:.\:\mathrm{Here} \\ $$$${s}\:=\:\frac{{a}\:+\:{b}\:+\:{c}}{\mathrm{2}}\:. \\ $$

Question Number 16194    Answers: 0   Comments: 21

Question Number 16140    Answers: 2   Comments: 0

Question Number 16110    Answers: 0   Comments: 1

let a_1 >a_2 >0 and a_(n+1) =(√(a_n a_(n−1 ) )) where n is greater than equal to 2 Then The sequence {a_(2n) } is (1) monotonic increasing (2)monotonic decreasing (3)non monotonic (4)unbounded

$$\mathrm{let}\:\mathrm{a}_{\mathrm{1}} >\mathrm{a}_{\mathrm{2}} >\mathrm{0}\:\mathrm{and}\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} =\sqrt{\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}−\mathrm{1}\:\:\:} } \\ $$$$\mathrm{where}\:\mathrm{n}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{2}\: \\ $$$$\mathrm{Then} \\ $$$$\mathrm{The}\:\mathrm{sequence}\:\left\{\mathrm{a}_{\mathrm{2n}} \right\}\:\mathrm{is}\: \\ $$$$\left(\mathrm{1}\right)\:\mathrm{monotonic}\:\mathrm{increasing} \\ $$$$\left(\mathrm{2}\right)\mathrm{monotonic}\:\mathrm{decreasing} \\ $$$$\left(\mathrm{3}\right)\mathrm{non}\:\mathrm{monotonic} \\ $$$$\left(\mathrm{4}\right)\mathrm{unbounded} \\ $$$$ \\ $$

Question Number 16108    Answers: 1   Comments: 1

Question Number 16077    Answers: 0   Comments: 0

Let ABCDE be an equiangular pentagon whose side lengths are rational numbers. Prove that the pentagon is regular.

$$\mathrm{Let}\:{ABCDE}\:\mathrm{be}\:\mathrm{an}\:\mathrm{equiangular} \\ $$$$\mathrm{pentagon}\:\mathrm{whose}\:\mathrm{side}\:\mathrm{lengths}\:\mathrm{are} \\ $$$$\mathrm{rational}\:\mathrm{numbers}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{pentagon}\:\mathrm{is}\:\mathrm{regular}. \\ $$

Question Number 16075    Answers: 0   Comments: 0

Prove that the perpendiculars dropped from the midpoints of the sides of a cyclic quadrilateral to the opposite sides are concurrent.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{perpendiculars} \\ $$$$\mathrm{dropped}\:\mathrm{from}\:\mathrm{the}\:\mathrm{midpoints}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{cyclic}\:\mathrm{quadrilateral}\:\mathrm{to}\:\mathrm{the}\:\mathrm{opposite} \\ $$$$\mathrm{sides}\:\mathrm{are}\:\mathrm{concurrent}. \\ $$

Question Number 16074    Answers: 0   Comments: 0

Let K, L, M and N be the midpoints of the sides AB, BC, CD and DA, respectively, of a cyclic quadrilateral ABCD. Prove that the orthocenters of the triangles AKN, BKL, CLM and DMN are the vertices of a parallelogram.

$$\mathrm{Let}\:{K},\:{L},\:{M}\:\mathrm{and}\:{N}\:\mathrm{be}\:\mathrm{the}\:\mathrm{midpoints}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{sides}\:{AB},\:{BC},\:{CD}\:\mathrm{and}\:{DA}, \\ $$$$\mathrm{respectively},\:\mathrm{of}\:\mathrm{a}\:\mathrm{cyclic}\:\mathrm{quadrilateral} \\ $$$${ABCD}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{orthocenters} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{triangles}\:{AKN},\:{BKL},\:{CLM}\:\mathrm{and} \\ $$$${DMN}\:\mathrm{are}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{parallelogram}. \\ $$

Question Number 16072    Answers: 1   Comments: 3

Let ABCD be a convex quadrilateral. Prove that the orthocenters of the triangles ABC, BCD, CDA and DAB are the vertices of a quadrilateral congruent to ABCD and prove that the centroids of the same triangles are the vertices of a cyclic quadrilateral.

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{orthocenters}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangles}\:{ABC},\:{BCD},\:{CDA}\:\mathrm{and}\:{DAB} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{quadrilateral} \\ $$$$\mathrm{congruent}\:\mathrm{to}\:{ABCD}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{centroids}\:\mathrm{of}\:\mathrm{the}\:\mathrm{same}\:\mathrm{triangles}\:\mathrm{are}\:\mathrm{the} \\ $$$$\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{cyclic}\:\mathrm{quadrilateral}. \\ $$

Question Number 16071    Answers: 1   Comments: 0

Let A′, B′ and C′ be points on the sides BC, CA and AB of the triangle ABC. Prove that the circumcircles of the triangles AB′C′, BA′C′ and CA′B′ have a common point. Prove that the property holds even if the points A′, B′ and C′ are collinear.

$$\mathrm{Let}\:{A}',\:{B}'\:\mathrm{and}\:{C}'\:\mathrm{be}\:\mathrm{points}\:\mathrm{on}\:\mathrm{the}\:\mathrm{sides} \\ $$$${BC},\:{CA}\:\mathrm{and}\:{AB}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle}\:{ABC}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{circumcircles}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{triangles}\:{AB}'{C}',\:{BA}'{C}'\:\mathrm{and}\:{CA}'{B}' \\ $$$$\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{point}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{property}\:\mathrm{holds}\:\mathrm{even}\:\mathrm{if}\:\mathrm{the}\:\mathrm{points}\:{A}', \\ $$$${B}'\:\mathrm{and}\:{C}'\:\mathrm{are}\:\mathrm{collinear}. \\ $$

Question Number 16070    Answers: 0   Comments: 0

Let ABCD be a convex quadrilateral. Prove that AB.CD + AD.BC = AC.BD if and only if ABCD is cyclic (Ptolemy′s theorem).

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral}. \\ $$$$\mathrm{Prove}\:\mathrm{that} \\ $$$${AB}.{CD}\:+\:{AD}.{BC}\:=\:{AC}.{BD} \\ $$$$\mathrm{if}\:\mathrm{and}\:\mathrm{only}\:\mathrm{if}\:{ABCD}\:\mathrm{is}\:\mathrm{cyclic}\:\left(\mathrm{Ptolemy}'\mathrm{s}\right. \\ $$$$\left.\mathrm{theorem}\right). \\ $$

Question Number 16069    Answers: 0   Comments: 0

In the interior of a quadrilateral ABCD, consider a variable point P. Prove that if the sum of distances from P to the sides is constant, then ABCD is a parallelogram.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{a}\:\mathrm{quadrilateral} \\ $$$${ABCD},\:\mathrm{consider}\:\mathrm{a}\:\mathrm{variable}\:\mathrm{point}\:{P}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{distances}\:\mathrm{from} \\ $$$${P}\:\mathrm{to}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{is}\:\mathrm{constant},\:\mathrm{then}\:{ABCD} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{parallelogram}. \\ $$

Question Number 16068    Answers: 2   Comments: 0

Let ABCD be a convex quadrilateral and let E and F be the points of intersections of the lines AB, CD and AD, BC, respectively. Prove that the midpoints of the segments AC, BD, and EF are collinear.

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{and}\:\mathrm{let}\:\mathrm{E}\:\mathrm{and}\:\mathrm{F}\:\mathrm{be}\:\mathrm{the}\:\mathrm{points}\:\mathrm{of} \\ $$$$\mathrm{intersections}\:\mathrm{of}\:\mathrm{the}\:\mathrm{lines}\:{AB},\:{CD}\:\mathrm{and} \\ $$$${AD},\:{BC},\:\mathrm{respectively}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{midpoints}\:\mathrm{of}\:\mathrm{the}\:\mathrm{segments}\:{AC},\:{BD}, \\ $$$$\mathrm{and}\:{EF}\:\mathrm{are}\:\mathrm{collinear}. \\ $$

Question Number 16067    Answers: 1   Comments: 8

Let d, d′ be two nonparallel lines in the plane and let k > 0. Find the locus of points, the sum of whose distances to d and d′ is equal to k.

$$\mathrm{Let}\:{d},\:{d}'\:\mathrm{be}\:\mathrm{two}\:\mathrm{nonparallel}\:\mathrm{lines}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{plane}\:\mathrm{and}\:\mathrm{let}\:{k}\:>\:\mathrm{0}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of} \\ $$$$\mathrm{points},\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{whose}\:\mathrm{distances}\:\mathrm{to} \\ $$$${d}\:\mathrm{and}\:{d}'\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:{k}. \\ $$

Question Number 16066    Answers: 2   Comments: 0

Let ABCD be a convex quadrilateral and let k > 0 be a real number. Find the locus of points M in its interior such that [MAB] + 2[MCD] = k.

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{and}\:\mathrm{let}\:{k}\:>\:\mathrm{0}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{points}\:{M}\:\mathrm{in}\:\mathrm{its}\:\mathrm{interior} \\ $$$$\mathrm{such}\:\mathrm{that} \\ $$$$\left[{MAB}\right]\:+\:\mathrm{2}\left[{MCD}\right]\:=\:{k}. \\ $$

Question Number 16065    Answers: 0   Comments: 0

Let ABCD be a convex quadrilateral. Find the locus of points M in its interior such that [MAB] = 2[MCD].

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{points}\:{M}\:\mathrm{in}\:\mathrm{its}\:\mathrm{interior} \\ $$$$\mathrm{such}\:\mathrm{that}\:\left[{MAB}\right]\:=\:\mathrm{2}\left[{MCD}\right]. \\ $$

Question Number 16064    Answers: 0   Comments: 8

Let ABCD be a convex quadrilateral and M a point in its interior such that [MAB] = [MBC] = [MCD] = [MDA]. Prove that one of the diagonals of ABCD passes through the midpoint of the other diagonal.

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral} \\ $$$$\mathrm{and}\:\mathrm{M}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{its}\:\mathrm{interior}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left[{MAB}\right]\:=\:\left[{MBC}\right]\:=\:\left[{MCD}\right]\:=\:\left[{MDA}\right]. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{diagonals}\:\mathrm{of} \\ $$$${ABCD}\:\mathrm{passes}\:\mathrm{through}\:\mathrm{the}\:\mathrm{midpoint}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{other}\:\mathrm{diagonal}. \\ $$

Question Number 16053    Answers: 0   Comments: 1

number of positive integers a and b and c satisfying a^b^c b^c^a c^a^b =5abc

$${number}\:{of}\:{positive}\:{integers}\:\boldsymbol{{a}}\:\boldsymbol{{and}}\:\boldsymbol{{b}}\:\boldsymbol{{and}}\:\boldsymbol{{c}}\:\boldsymbol{{satisfying}} \\ $$$$\boldsymbol{{a}}^{\boldsymbol{{b}}^{\boldsymbol{{c}}} } \boldsymbol{{b}}^{\boldsymbol{{c}}^{\boldsymbol{{a}}} } \boldsymbol{{c}}^{\boldsymbol{{a}}^{\boldsymbol{{b}}} } =\mathrm{5}\boldsymbol{{abc}} \\ $$

  Pg 103      Pg 104      Pg 105      Pg 106      Pg 107      Pg 108      Pg 109      Pg 110      Pg 111      Pg 112   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com