Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 107

Question Number 17886    Answers: 0   Comments: 7

Question Number 17884    Answers: 1   Comments: 1

Question Number 17935    Answers: 0   Comments: 0

Ball A is dropped from the top of a building. At the same instant ball B is thrown vertically upwards from the ground. When the ball collide, they are moving in opposite directions and the speed of A(u) is twice the speed of B. The relative velocity of the ball just before collision and relative acceleration between them is (only their magnitudes) (A) 0 and 0 (B) ((3u)/2) and 0 (C) ((3u)/2) and 2g (D) ((3u)/2) and g

$$\mathrm{Ball}\:{A}\:\mathrm{is}\:\mathrm{dropped}\:\mathrm{from}\:\mathrm{the}\:\mathrm{top}\:\mathrm{of}\:\mathrm{a}\:\mathrm{building}. \\ $$$$\mathrm{At}\:\mathrm{the}\:\mathrm{same}\:\mathrm{instant}\:\mathrm{ball}\:{B}\:\mathrm{is}\:\mathrm{thrown} \\ $$$$\mathrm{vertically}\:\mathrm{upwards}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground}. \\ $$$$\mathrm{When}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{collide},\:\mathrm{they}\:\mathrm{are}\:\mathrm{moving}\:\:\mathrm{in} \\ $$$$\mathrm{opposite}\:\mathrm{directions}\:\mathrm{and}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:{A}\left({u}\right) \\ $$$$\mathrm{is}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{speed}\:\mathrm{of}\:{B}.\:\mathrm{The}\:\mathrm{relative}\: \\ $$$$\mathrm{velocity}\:\mathrm{of}\:\mathrm{the}\:\mathrm{ball}\:\mathrm{just}\:\mathrm{before}\:\mathrm{collision} \\ $$$$\mathrm{and}\:\mathrm{relative}\:\mathrm{acceleration}\:\mathrm{between}\:\mathrm{them} \\ $$$$\mathrm{is}\:\left(\mathrm{only}\:\mathrm{their}\:\mathrm{magnitudes}\right) \\ $$$$\left(\mathrm{A}\right)\:\mathrm{0}\:\mathrm{and}\:\mathrm{0}\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{0} \\ $$$$\left(\mathrm{C}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{2}{g}\:\:\:\left(\mathrm{D}\right)\:\frac{\mathrm{3}{u}}{\mathrm{2}}\:\mathrm{and}\:{g} \\ $$

Question Number 17771    Answers: 1   Comments: 1

Question Number 17743    Answers: 2   Comments: 0

Question Number 17692    Answers: 1   Comments: 0

Question Number 17653    Answers: 0   Comments: 6

A line segment moves in the plane with its end points on the coordinate axes so that the sum of the length of its intersect on the coordinate axes is a constant C . Find the locus of the mid points of this segment . Ans. is 8(∣x∣^3 +∣y∣^3 )=C . Λ means power . pls. solve it.

$$\mathrm{A}\:\mathrm{line}\:\mathrm{segment}\:\mathrm{moves}\:\mathrm{in}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\mathrm{with}\:\mathrm{its}\:\mathrm{end}\:\mathrm{points}\:\mathrm{on}\:\mathrm{the}\:\mathrm{coordinate} \\ $$$$\mathrm{axes}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{length} \\ $$$$\mathrm{of}\:\mathrm{its}\:\mathrm{intersect}\:\mathrm{on}\:\mathrm{the}\:\mathrm{coordinate}\: \\ $$$$\mathrm{axes}\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{C}\:. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:\mathrm{the}\:\mathrm{mid}\:\mathrm{points}\:\mathrm{of} \\ $$$$\mathrm{this}\:\mathrm{segment}\:. \\ $$$$\mathrm{Ans}.\:\mathrm{is}\:\:\:\mathrm{8}\left(\mid\mathrm{x}\mid^{\mathrm{3}} +\mid\mathrm{y}\mid^{\mathrm{3}} \right)=\mathrm{C}\:. \\ $$$$\Lambda\:\:\mathrm{means}\:\mathrm{power}\:.\:\mathrm{pls}.\:\mathrm{solve}\:\mathrm{it}. \\ $$

Question Number 17614    Answers: 0   Comments: 3

The triangle ABC has CA = CB. P is a point on the circumcircle between A and B (and on the opposite side of the line AB to C). D is the foot of the perpendicular from C to PB. Show that PA + PB = 2∙PD.

$$\mathrm{The}\:\mathrm{triangle}\:\mathrm{ABC}\:\mathrm{has}\:\mathrm{CA}\:=\:\mathrm{CB}.\:\mathrm{P}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{point}\:\mathrm{on}\:\mathrm{the}\:\mathrm{circumcircle}\:\mathrm{between}\:\mathrm{A} \\ $$$$\mathrm{and}\:\mathrm{B}\:\left(\mathrm{and}\:\mathrm{on}\:\mathrm{the}\:\mathrm{opposite}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{line}\:\mathrm{AB}\:\mathrm{to}\:\mathrm{C}\right).\:\mathrm{D}\:\mathrm{is}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{perpendicular}\:\mathrm{from}\:\mathrm{C}\:\mathrm{to}\:\mathrm{PB}.\:\mathrm{Show}\:\mathrm{that} \\ $$$$\mathrm{PA}\:+\:\mathrm{PB}\:=\:\mathrm{2}\centerdot\mathrm{PD}. \\ $$

Question Number 17580    Answers: 0   Comments: 8

Question Number 17524    Answers: 1   Comments: 0

The circle ω touches the circle Ω internally at P. The centre O of Ω is outside ω. Let XY be a diameter of Ω which is also tangent to ω. Assume PY > PX. Let PY intersect ω at Z. If YZ = 2PZ, what is the magnitude of ∠PYX in degrees?

$$\mathrm{The}\:\mathrm{circle}\:\omega\:\mathrm{touches}\:\mathrm{the}\:\mathrm{circle}\:\Omega \\ $$$$\mathrm{internally}\:\mathrm{at}\:{P}.\:\mathrm{The}\:\mathrm{centre}\:{O}\:\mathrm{of}\:\Omega\:\mathrm{is} \\ $$$$\mathrm{outside}\:\omega.\:\mathrm{Let}\:{XY}\:\mathrm{be}\:\mathrm{a}\:\mathrm{diameter}\:\mathrm{of}\:\Omega \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{also}\:\mathrm{tangent}\:\mathrm{to}\:\omega.\:\mathrm{Assume} \\ $$$${PY}\:>\:{PX}.\:\mathrm{Let}\:{PY}\:\mathrm{intersect}\:\omega\:\mathrm{at}\:{Z}.\:\mathrm{If} \\ $$$${YZ}\:=\:\mathrm{2}{PZ},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of} \\ $$$$\angle{PYX}\:\mathrm{in}\:\mathrm{degrees}? \\ $$

Question Number 17520    Answers: 1   Comments: 1

Find the coordinate of the point in RΛ3 which is the reflection the point (1,2,3) with respect to plane X+Y+Z=1 .

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{coordinate}\:\mathrm{of}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in} \\ $$$$\mathrm{R}\Lambda\mathrm{3}\:\mathrm{which}\:\mathrm{is}\:\mathrm{the}\:\mathrm{reflection}\:\mathrm{the}\:\mathrm{point} \\ $$$$\left(\mathrm{1},\mathrm{2},\mathrm{3}\right)\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{plane}\: \\ $$$$\mathrm{X}+\mathrm{Y}+\mathrm{Z}=\mathrm{1}\:. \\ $$

Question Number 17449    Answers: 1   Comments: 4

Between 2:00 and 2:15, what time is it exactly when the hour, minute, and second′s hand of a clock occupy the same angular position.

$$\mathrm{Between}\:\mathrm{2}:\mathrm{00}\:\mathrm{and}\:\mathrm{2}:\mathrm{15},\:\mathrm{what}\:\mathrm{time} \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{exactly}\:\mathrm{when}\:\mathrm{the}\:\mathrm{hour}, \\ $$$$\mathrm{minute},\:\mathrm{and}\:\mathrm{second}'\mathrm{s}\:\mathrm{hand}\:\mathrm{of}\:\mathrm{a} \\ $$$$\mathrm{clock}\:\mathrm{occupy}\:\mathrm{the}\:\mathrm{same}\:\mathrm{angular} \\ $$$$\mathrm{position}. \\ $$$$ \\ $$

Question Number 17440    Answers: 1   Comments: 0

3x−4y=0,4y−5z=0,5z−3x=0 then x,y,z is AP,GP,HP,AGP??????

$$\mathrm{3}{x}−\mathrm{4}{y}=\mathrm{0},\mathrm{4}{y}−\mathrm{5}{z}=\mathrm{0},\mathrm{5}{z}−\mathrm{3}{x}=\mathrm{0} \\ $$$${then}\:{x},{y},{z}\:{is}\:{AP},{GP},{HP},{AGP}?????? \\ $$

Question Number 17645    Answers: 2   Comments: 1

Suppose that the point M lying in the interior of the parallelogram ABCD, two parallels to AB and AD are drawn, intersecting the sides of ABCD at the points P, Q, R, S (See Figure). Prove that M lies on the diagonal AC if and only if [MRDS] = [MPBQ].

$$\mathrm{Suppose}\:\mathrm{that}\:\mathrm{the}\:\mathrm{point}\:{M}\:\mathrm{lying}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{interior}\:\mathrm{of}\:\mathrm{the}\:\mathrm{parallelogram}\:{ABCD}, \\ $$$$\mathrm{two}\:\mathrm{parallels}\:\mathrm{to}\:{AB}\:\mathrm{and}\:{AD}\:\mathrm{are}\:\mathrm{drawn}, \\ $$$$\mathrm{intersecting}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:{ABCD}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{points}\:{P},\:{Q},\:{R},\:{S}\:\left(\mathrm{See}\:\mathrm{Figure}\right).\:\mathrm{Prove} \\ $$$$\mathrm{that}\:{M}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{diagonal}\:{AC}\:\mathrm{if}\:\mathrm{and} \\ $$$$\mathrm{only}\:\mathrm{if}\:\left[{MRDS}\right]\:=\:\left[{MPBQ}\right]. \\ $$

Question Number 17373    Answers: 2   Comments: 0

Find the point in interior of a convex quadrilateral such that the sum of its distances to the 4 vertices is minimal. Find the point in interior of a convex quadrilateral such that the sum of its distances to the 4 sides is minimal.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{a}\:\mathrm{convex} \\ $$$$\mathrm{quadrilateral}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its} \\ $$$$\mathrm{distances}\:\mathrm{to}\:\mathrm{the}\:\mathrm{4}\:\mathrm{vertices}\:\mathrm{is}\:\mathrm{minimal}. \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\:\mathrm{in}\:\mathrm{interior}\:\mathrm{of}\:\mathrm{a}\:\mathrm{convex} \\ $$$$\mathrm{quadrilateral}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{its} \\ $$$$\mathrm{distances}\:\mathrm{to}\:\mathrm{the}\:\mathrm{4}\:\mathrm{sides}\:\mathrm{is}\:\mathrm{minimal}. \\ $$

Question Number 17273    Answers: 1   Comments: 2

The intersection of the ABC triangle median is at G point. The corner of the BGC is 90°. If the AG cut length is 12 cm, locate the BC side.

$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{intersection}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{ABC}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{median}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{G}}\:\boldsymbol{\mathrm{point}}.\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{corner}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{BGC}}\:\boldsymbol{\mathrm{is}}\:\mathrm{90}°.\:\boldsymbol{\mathrm{If}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{AG}}\:\boldsymbol{\mathrm{cut}}\: \\ $$$$\boldsymbol{\mathrm{length}}\:\boldsymbol{\mathrm{is}}\:\mathrm{12}\:\boldsymbol{\mathrm{cm}},\:\boldsymbol{\mathrm{locate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{BC}}\:\boldsymbol{\mathrm{side}}. \\ $$

Question Number 17177    Answers: 1   Comments: 0

Question Number 17158    Answers: 0   Comments: 4

Please solve Q. 16069. Ask from me the solution if needed and please explain it.

$$\mathrm{Please}\:\mathrm{solve}\:\mathrm{Q}.\:\mathrm{16069}.\:\mathrm{Ask}\:\mathrm{from}\:\mathrm{me}\:\mathrm{the} \\ $$$$\mathrm{solution}\:\mathrm{if}\:\mathrm{needed}\:\mathrm{and}\:\mathrm{please}\:\mathrm{explain}\:\mathrm{it}. \\ $$

Question Number 16980    Answers: 0   Comments: 1

To Q16066: I have posted my solution there. Those who are intetested in this interesting question please have a critical view at it. Maybe there are alternative solutions which are easier and more direct and straight on.

$$\mathrm{To}\:\mathrm{Q16066}: \\ $$$$\mathrm{I}\:\mathrm{have}\:\mathrm{posted}\:\mathrm{my}\:\mathrm{solution}\:\mathrm{there}. \\ $$$$\mathrm{Those}\:\mathrm{who}\:\mathrm{are}\:\mathrm{intetested}\:\mathrm{in}\:\mathrm{this}\:\mathrm{interesting} \\ $$$$\mathrm{question}\:\mathrm{please}\:\mathrm{have}\:\mathrm{a}\:\mathrm{critical}\:\mathrm{view}\:\mathrm{at} \\ $$$$\mathrm{it}.\:\mathrm{Maybe}\:\mathrm{there}\:\mathrm{are}\:\mathrm{alternative}\:\mathrm{solutions} \\ $$$$\mathrm{which}\:\mathrm{are}\:\mathrm{easier}\:\mathrm{and}\:\mathrm{more}\:\mathrm{direct}\:\mathrm{and} \\ $$$$\mathrm{straight}\:\mathrm{on}. \\ $$

Question Number 16958    Answers: 0   Comments: 0

Let ABCD be a quadrilateral with an inscribed circle. Prove that the circles inscribed in triangles ABC and ADC are tangent to each other.

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{quadrilateral}\:\mathrm{with}\:\mathrm{an} \\ $$$$\mathrm{inscribed}\:\mathrm{circle}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{circles} \\ $$$$\mathrm{inscribed}\:\mathrm{in}\:\mathrm{triangles}\:{ABC}\:\mathrm{and}\:{ADC} \\ $$$$\mathrm{are}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{each}\:\mathrm{other}. \\ $$

Question Number 16951    Answers: 0   Comments: 0

Let M be a point in interior of ΔABC. Three lines are drawn through M, parallel to triangle′s sides, thereby producing three trapezoids. Suppose a diagonal is drawn in each trapezoid in such a way that the diagonals have no common endpoints. These three diagonals divide ABC into seven parts, four of them being triangles. Prove that the area of one of the four triangles equals the sum of the areas of the other three.

$$\mathrm{Let}\:{M}\:\mathrm{be}\:\mathrm{a}\:\mathrm{point}\:\mathrm{in}\:\mathrm{interior}\:\mathrm{of}\:\Delta{ABC}. \\ $$$$\mathrm{Three}\:\mathrm{lines}\:\mathrm{are}\:\mathrm{drawn}\:\mathrm{through}\:{M}, \\ $$$$\mathrm{parallel}\:\mathrm{to}\:\mathrm{triangle}'\mathrm{s}\:\mathrm{sides},\:\mathrm{thereby} \\ $$$$\mathrm{producing}\:\mathrm{three}\:\mathrm{trapezoids}.\:\mathrm{Suppose}\:\mathrm{a} \\ $$$$\mathrm{diagonal}\:\mathrm{is}\:\mathrm{drawn}\:\mathrm{in}\:\mathrm{each}\:\mathrm{trapezoid}\:\mathrm{in} \\ $$$$\mathrm{such}\:\mathrm{a}\:\mathrm{way}\:\mathrm{that}\:\mathrm{the}\:\mathrm{diagonals}\:\mathrm{have}\:\mathrm{no} \\ $$$$\mathrm{common}\:\mathrm{endpoints}.\:\mathrm{These}\:\mathrm{three} \\ $$$$\mathrm{diagonals}\:\mathrm{divide}\:{ABC}\:\mathrm{into}\:\mathrm{seven} \\ $$$$\mathrm{parts},\:\mathrm{four}\:\mathrm{of}\:\mathrm{them}\:\mathrm{being}\:\mathrm{triangles}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{four} \\ $$$$\mathrm{triangles}\:\mathrm{equals}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{areas} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{three}. \\ $$

Question Number 16947    Answers: 0   Comments: 0

Through the vertices of the smaller base AB of the trapezoid ABCD two parallel lines are drawn, intersecting the segment CD. These lines and the trapezoid′s diagonals divide it into seven triangles and a pentagon. Show that the area of the pentagon equals the sum of the areas of the three triangles that share a common side with the trapezoid.

$$\mathrm{Through}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{the}\:\mathrm{smaller} \\ $$$$\mathrm{base}\:{AB}\:\mathrm{of}\:\mathrm{the}\:\mathrm{trapezoid}\:{ABCD}\:\mathrm{two} \\ $$$$\mathrm{parallel}\:\mathrm{lines}\:\mathrm{are}\:\mathrm{drawn},\:\mathrm{intersecting} \\ $$$$\mathrm{the}\:\mathrm{segment}\:{CD}.\:\mathrm{These}\:\mathrm{lines}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{trapezoid}'\mathrm{s}\:\mathrm{diagonals}\:\mathrm{divide}\:\mathrm{it}\:\mathrm{into} \\ $$$$\mathrm{seven}\:\mathrm{triangles}\:\mathrm{and}\:\mathrm{a}\:\mathrm{pentagon}.\:\mathrm{Show} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{pentagon}\:\mathrm{equals} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{the}\:\mathrm{three} \\ $$$$\mathrm{triangles}\:\mathrm{that}\:\mathrm{share}\:\mathrm{a}\:\mathrm{common}\:\mathrm{side} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{trapezoid}. \\ $$

Question Number 16946    Answers: 0   Comments: 0

Consider the quadrilateral ABCD. The points M, N, P and Q are the midpoints of the sides AB, BC, CD and DA. Let X = AP ∩ BQ, Y = BQ ∩ CM, Q = CM ∩ DN and T= DN ∩ AP. Prove that [XYZT] = [AQX] + [BMY] + [CNZ] + [DPT].

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{quadrilateral}\:{ABCD}. \\ $$$$\mathrm{The}\:\mathrm{points}\:{M},\:{N},\:{P}\:\mathrm{and}\:{Q}\:\mathrm{are}\:\mathrm{the} \\ $$$$\mathrm{midpoints}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sides}\:{AB},\:{BC},\:{CD} \\ $$$$\mathrm{and}\:{DA}. \\ $$$$\mathrm{Let}\:{X}\:=\:{AP}\:\cap\:{BQ},\:{Y}\:=\:{BQ}\:\cap\:{CM}, \\ $$$${Q}\:=\:{CM}\:\cap\:{DN}\:\mathrm{and}\:{T}=\:{DN}\:\cap\:{AP}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\left[{XYZT}\right]\:=\:\left[{AQX}\right]\:+\:\left[{BMY}\right] \\ $$$$+\:\left[{CNZ}\right]\:+\:\left[{DPT}\right]. \\ $$

Question Number 16940    Answers: 1   Comments: 1

Six points A, B, C, D, E, and F are placed on a square rigid, as shown. How many triangles that are not right-angled can be drawn by using 3 of these 6 points as vertices?

$$\mathrm{Six}\:\mathrm{points}\:\mathrm{A},\:\mathrm{B},\:\mathrm{C},\:\mathrm{D},\:\mathrm{E},\:\mathrm{and}\:\mathrm{F}\:\mathrm{are} \\ $$$$\mathrm{placed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{square}\:\mathrm{rigid},\:\mathrm{as}\:\mathrm{shown}. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{triangles}\:\mathrm{that}\:\mathrm{are}\:\boldsymbol{\mathrm{not}} \\ $$$$\mathrm{right}-\mathrm{angled}\:\mathrm{can}\:\mathrm{be}\:\mathrm{drawn}\:\mathrm{by}\:\mathrm{using}\:\mathrm{3} \\ $$$$\mathrm{of}\:\mathrm{these}\:\mathrm{6}\:\mathrm{points}\:\mathrm{as}\:\mathrm{vertices}? \\ $$

Question Number 16882    Answers: 0   Comments: 2

^• In plane parallel lines are the lines which don′t meet each other. ^• What is the condition in space that two lines be parallel?

$$\:^{\bullet} \mathrm{In}\:\mathrm{plane}\:\mathrm{parallel}\:\mathrm{lines}\:\mathrm{are}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\mathrm{which}\:\mathrm{don}'\mathrm{t}\:\mathrm{meet}\:\mathrm{each}\:\mathrm{other}. \\ $$$$ \\ $$$$\:^{\bullet} \mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{in}\:\mathrm{space} \\ $$$$\mathrm{that}\:\mathrm{two}\:\mathrm{lines}\:\mathrm{be}\:\mathrm{parallel}? \\ $$

Question Number 16879    Answers: 0   Comments: 0

Let ABCD be a parallelogram. The points M, N and P are chosen on the segments BD, BC and CD, respectively, so that CNMP is a parallelogram. Let E = AN ∩ BD and F = AP ∩ BD. Prove that [AEF] = [DFP] + [BEN].

$$\mathrm{Let}\:{ABCD}\:\mathrm{be}\:\mathrm{a}\:\mathrm{parallelogram}.\:\mathrm{The} \\ $$$$\mathrm{points}\:{M},\:{N}\:\mathrm{and}\:{P}\:\mathrm{are}\:\mathrm{chosen}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{segments}\:{BD},\:{BC}\:\mathrm{and}\:{CD}, \\ $$$$\mathrm{respectively},\:\mathrm{so}\:\mathrm{that}\:{CNMP}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{parallelogram}.\:\mathrm{Let}\:{E}\:=\:{AN}\:\cap\:{BD}\:\mathrm{and} \\ $$$${F}\:=\:{AP}\:\cap\:{BD}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\left[{AEF}\right]\:=\:\left[{DFP}\right]\:+\:\left[{BEN}\right]. \\ $$

  Pg 102      Pg 103      Pg 104      Pg 105      Pg 106      Pg 107      Pg 108      Pg 109      Pg 110      Pg 111   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com