Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 107

Question Number 15175    Answers: 2   Comments: 1

Question Number 15170    Answers: 2   Comments: 2

Question Number 15017    Answers: 0   Comments: 0

Calculate the heat neccessary to raise the temperature of 5.00 mol of butane from 290K to 593K at a constant pressure. where Cp(19.41 + 0.233T)J/mol/K

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{heat}\:\mathrm{neccessary}\:\mathrm{to}\:\mathrm{raise}\:\mathrm{the}\:\mathrm{temperature}\:\mathrm{of}\:\mathrm{5}.\mathrm{00}\:\mathrm{mol}\:\mathrm{of}\:\mathrm{butane} \\ $$$$\mathrm{from}\:\mathrm{290K}\:\mathrm{to}\:\mathrm{593K}\:\mathrm{at}\:\mathrm{a}\:\mathrm{constant}\:\mathrm{pressure}.\:\mathrm{where}\:\mathrm{Cp}\left(\mathrm{19}.\mathrm{41}\:+\:\mathrm{0}.\mathrm{233T}\right)\mathrm{J}/\mathrm{mol}/\mathrm{K} \\ $$

Question Number 14965    Answers: 2   Comments: 2

Question Number 14964    Answers: 0   Comments: 0

proof that ∀ x,y ∈N ∃ a,b,c ∈N ∍ (4/(x^2 +y^2 ))=(1/a) + (1/b) + (1/c)

$$\mathrm{proof}\:\mathrm{that}\: \\ $$$$\forall\:{x},{y}\:\in\mathbb{N}\:\:\exists\:{a},{b},{c}\:\in\mathbb{N}\:\backepsilon\:\frac{\mathrm{4}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }=\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}} \\ $$

Question Number 15212    Answers: 1   Comments: 1

Question Number 14940    Answers: 2   Comments: 12

For those who are interested in Geometry: A triangle has an area of 1 unit. Each of its sides is divided into 4 equal parts through 3 points. The first and the last point of each side will be connected with each other to form 2 inscribed triangles and these 2 triangles form a hexagon. Find the area of the hexagon. What is the result, if each side is equally divided into 5 parts, or generally into n parts?

$${For}\:{those}\:{who}\:{are}\:{interested}\:{in}\: \\ $$$${Geometry}:\: \\ $$$${A}\:{triangle}\:{has}\:{an}\:{area}\:{of}\:\mathrm{1}\:{unit}.\:{Each} \\ $$$${of}\:{its}\:{sides}\:{is}\:{divided}\:{into}\:\mathrm{4}\:{equal}\:{parts} \\ $$$${through}\:\mathrm{3}\:{points}.\:{The}\:{first}\:{and}\:{the}\:{last} \\ $$$${point}\:{of}\:{each}\:{side}\:{will}\:{be}\:{connected} \\ $$$${with}\:{each}\:{other}\:{to}\:{form}\:\mathrm{2}\:{inscribed} \\ $$$${triangles}\:{and}\:{these}\:\mathrm{2}\:{triangles}\:{form} \\ $$$${a}\:{hexagon}.\:{Find}\:{the}\:{area}\:{of}\:{the}\:{hexagon}. \\ $$$$ \\ $$$${What}\:{is}\:{the}\:{result},\:{if}\:{each}\:{side}\:{is} \\ $$$${equally}\:{divided}\:{into}\:\mathrm{5}\:{parts},\:{or} \\ $$$${generally}\:{into}\:{n}\:{parts}? \\ $$

Question Number 14905    Answers: 0   Comments: 5

Question Number 14863    Answers: 1   Comments: 8

Question Number 14810    Answers: 0   Comments: 0

7 real numbers are given in the interval (1, 13). Prove that atleast 3 of them are the lengths of a triangle′s sides.

$$\mathrm{7}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{are}\:\mathrm{given}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval} \\ $$$$\left(\mathrm{1},\:\mathrm{13}\right).\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{atleast}\:\mathrm{3}\:\mathrm{of}\:\mathrm{them} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{lengths}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}'\mathrm{s}\:\mathrm{sides}. \\ $$

Question Number 14809    Answers: 1   Comments: 2

Let ABC be an acute triangle. Find the positions of the points M, N, P on the sides BC, CA, AB, respectively, such that the perimeter of the triangle MNP is minimal.

$$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}\:\mathrm{triangle}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{positions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{points}\:{M},\:{N},\:{P}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{sides}\:{BC},\:{CA},\:{AB},\:\mathrm{respectively}, \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{the}\:\mathrm{triangle} \\ $$$${MNP}\:\mathrm{is}\:\mathrm{minimal}. \\ $$

Question Number 14807    Answers: 0   Comments: 0

Prove that the medians of a given triangle can form a triangle.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{medians}\:\mathrm{of}\:\mathrm{a}\:\mathrm{given} \\ $$$$\mathrm{triangle}\:\mathrm{can}\:\mathrm{form}\:\mathrm{a}\:\mathrm{triangle}. \\ $$

Question Number 14797    Answers: 1   Comments: 12

Question Number 14724    Answers: 2   Comments: 1

Question Number 14661    Answers: 1   Comments: 1

Question Number 14630    Answers: 0   Comments: 2

solve the eqn dr/dθ=[r(a^2 −r^2 )/a^2 +r^2 ]cotθ hint. let a^2 +r^2 =a^2 −r^2 +2r^2 .

$$\mathrm{solve}\:\mathrm{the}\:\mathrm{eqn} \\ $$$$\mathrm{dr}/\mathrm{d}\theta=\left[\mathrm{r}\left(\mathrm{a}^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} \right)/\mathrm{a}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \right]\mathrm{cot}\theta \\ $$$$\mathrm{hint}.\:\mathrm{let}\:\mathrm{a}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} =\mathrm{a}^{\mathrm{2}} −\mathrm{r}^{\mathrm{2}} +\mathrm{2r}^{\mathrm{2}} . \\ $$

Question Number 14502    Answers: 1   Comments: 3

Question Number 14384    Answers: 0   Comments: 6

Question Number 14365    Answers: 0   Comments: 1

Related to Q#14157 a^2 +b^2 −ab=α^2 b^2 +c^2 −bc=β^2 c^2 +d^2 −cd=γ^2 d^2 +e^2 −de=δ^2 e^2 +a^2 −ea=ξ^2

$$\mathrm{Related}\:\mathrm{to}\:\mathrm{Q}#\mathrm{14157} \\ $$$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{ab}=\alpha^{\mathrm{2}} \\ $$$$\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{bc}=\beta^{\mathrm{2}} \\ $$$$\mathrm{c}^{\mathrm{2}} +\mathrm{d}^{\mathrm{2}} −\mathrm{cd}=\gamma^{\mathrm{2}} \\ $$$$\mathrm{d}^{\mathrm{2}} +\mathrm{e}^{\mathrm{2}} −\mathrm{de}=\delta^{\mathrm{2}} \\ $$$$\mathrm{e}^{\mathrm{2}} +\mathrm{a}^{\mathrm{2}} −\mathrm{ea}=\xi^{\mathrm{2}} \\ $$

Question Number 14364    Answers: 0   Comments: 9

Modification of Q#14157 x^2 +y^2 −xy=a^2 y^2 +z^2 −yz=b^2 z^2 +x^2 −zx=c^2 Pl discuss also geometrical/ trigonometrical aspects.

$$\mathrm{Modification}\:\mathrm{of}\:\mathrm{Q}#\mathrm{14157} \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} −\mathrm{xy}=\mathrm{a}^{\mathrm{2}} \\ $$$$\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} −\mathrm{yz}=\mathrm{b}^{\mathrm{2}} \\ $$$$\mathrm{z}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} −\mathrm{zx}=\mathrm{c}^{\mathrm{2}} \\ $$$$\mathrm{Pl}\:\mathrm{discuss}\:\mathrm{also}\:\mathrm{geometrical}/ \\ $$$$\mathrm{trigonometrical}\:\mathrm{aspects}. \\ $$

Question Number 14145    Answers: 1   Comments: 1

Question Number 14104    Answers: 0   Comments: 0

Question Number 14071    Answers: 2   Comments: 1

Solve the Partial fraction ((3x^4 − 9x^3 + 16x^2 + 9x + 13)/((x − 1)^2 (x^2 + 2x − 2)^2 ))

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{Partial}\:\mathrm{fraction}\: \\ $$$$\frac{\mathrm{3x}^{\mathrm{4}} \:−\:\mathrm{9x}^{\mathrm{3}} \:+\:\mathrm{16x}^{\mathrm{2}} \:+\:\mathrm{9x}\:+\:\mathrm{13}}{\left(\mathrm{x}\:−\:\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{2x}\:−\:\mathrm{2}\right)^{\mathrm{2}} } \\ $$

Question Number 13738    Answers: 1   Comments: 1

P,Q,R,S are four locations on the same horizontal plane.Q is on a bearing of 041° from P and the distance is 40km. S is 28km from R on a bearing 074°, R is directly due north of P and the distance between Q and R is 38km. (a)the bearing of R from Q (b)the distance between Q and S (c)the distance between P and R

$$\mathrm{P},\mathrm{Q},\mathrm{R},\mathrm{S}\:\mathrm{are}\:\mathrm{four}\:\mathrm{locations}\:\mathrm{on}\:\mathrm{the} \\ $$$$\mathrm{same}\:\mathrm{horizontal}\:\mathrm{plane}.\mathrm{Q}\:\mathrm{is}\:\mathrm{on}\:\mathrm{a}\: \\ $$$$\mathrm{bearing}\:\mathrm{of}\:\mathrm{041}°\:\mathrm{from}\:\mathrm{P}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{distance}\:\mathrm{is}\:\mathrm{40km}. \\ $$$$\mathrm{S}\:\mathrm{is}\:\mathrm{28km}\:\mathrm{from}\:\mathrm{R}\:\mathrm{on}\:\mathrm{a}\:\mathrm{bearing}\:\mathrm{074}°, \\ $$$$\mathrm{R}\:\mathrm{is}\:\mathrm{directly}\:\mathrm{due}\:\mathrm{north}\:\mathrm{of}\:\mathrm{P}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{Q}\:\mathrm{and}\:\mathrm{R}\:\mathrm{is} \\ $$$$\mathrm{38km}. \\ $$$$\left(\mathrm{a}\right)\mathrm{the}\:\mathrm{bearing}\:\mathrm{of}\:\mathrm{R}\:\mathrm{from}\:\mathrm{Q} \\ $$$$\left(\mathrm{b}\right)\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{Q}\:\mathrm{and}\:\mathrm{S} \\ $$$$\left(\mathrm{c}\right)\mathrm{the}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{P}\:\mathrm{and}\:\mathrm{R} \\ $$

Question Number 13735    Answers: 2   Comments: 6

Question Number 13501    Answers: 1   Comments: 0

Find x 10_C_x = 5_C_2

$$\mathrm{Find}\:\mathrm{x} \\ $$$$\mathrm{10}_{\mathrm{C}_{\mathrm{x}} } \:=\:\mathrm{5}_{\mathrm{C}_{\mathrm{2}} } \\ $$

  Pg 102      Pg 103      Pg 104      Pg 105      Pg 106      Pg 107      Pg 108      Pg 109      Pg 110      Pg 111   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com