Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 106

Question Number 22055    Answers: 0   Comments: 1

Question Number 22001    Answers: 1   Comments: 0

if determinant (((z−(z/4))),())=2 then value of determinant ((z),())

$${if}\:\begin{vmatrix}{{z}−\frac{{z}}{\mathrm{4}}}\\{}\end{vmatrix}=\mathrm{2}\:{then}\:{value}\:{of}\:\begin{vmatrix}{{z}}\\{}\end{vmatrix} \\ $$

Question Number 21973    Answers: 1   Comments: 1

ΔABC with sides a, b, c ∈ Z and ∠A = 3∠B If its circumference is minimum, then find a, b, c

$$\Delta{ABC}\:\mathrm{with}\:\mathrm{sides}\:{a},\:{b},\:{c}\:\in\:\mathbb{Z}\:\mathrm{and}\:\angle{A}\:=\:\mathrm{3}\angle{B} \\ $$$$\mathrm{If}\:\mathrm{its}\:\mathrm{circumference}\:\mathrm{is}\:\mathrm{minimum},\:\mathrm{then} \\ $$$$\mathrm{find}\:{a},\:{b},\:{c} \\ $$

Question Number 21903    Answers: 0   Comments: 0

ΔABC with sides a, b, c ∈ Z and ∠A = 3∠B If its circumference is minimum, then find a, b, c

$$\Delta{ABC}\:\mathrm{with}\:\mathrm{sides}\:{a},\:{b},\:{c}\:\in\:\mathbb{Z}\:\mathrm{and}\:\angle{A}\:=\:\mathrm{3}\angle{B} \\ $$$$\mathrm{If}\:\mathrm{its}\:\mathrm{circumference}\:\mathrm{is}\:\mathrm{minimum},\:\mathrm{then}\:\mathrm{find}\:{a},\:{b},\:{c} \\ $$

Question Number 21840    Answers: 1   Comments: 0

A cone is placed inside a sphere. If volume of the cone is maximum, find the ratio of radius from the cone and sphere

$$\mathrm{A}\:\mathrm{cone}\:\mathrm{is}\:\mathrm{placed}\:\mathrm{inside}\:\mathrm{a}\:\mathrm{sphere}. \\ $$$$\mathrm{If}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cone}\:\mathrm{is}\:\mathrm{maximum}, \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{from}\:\mathrm{the}\:\mathrm{cone}\:\mathrm{and}\:\mathrm{sphere} \\ $$

Question Number 21825    Answers: 0   Comments: 2

Find the simplest form of Σ_(k = 1) ^n 2^k [sin^2 (((2kπ)/3)) + (1/4)]

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{simplest}\:\mathrm{form}\:\mathrm{of} \\ $$$$\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left[\mathrm{sin}^{\mathrm{2}} \:\left(\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\right)\:+\:\frac{\mathrm{1}}{\mathrm{4}}\right] \\ $$

Question Number 21754    Answers: 1   Comments: 0

Q. In 2014, country X had 783 miles of paved roads. Starting in 2015, the country has been building 8 miles of new paved roads each year. At this rate, how many miles of paved roads will country X have in 2030?

$$\mathrm{Q}.\:\mathrm{In}\:\mathrm{2014},\:\mathrm{country}\:\mathrm{X}\:\mathrm{had}\:\mathrm{783}\:\mathrm{miles}\:\mathrm{of}\:\mathrm{paved}\:\mathrm{roads}.\:\mathrm{Starting}\:\mathrm{in}\: \\ $$$$\:\:\:\:\:\:\:\mathrm{2015},\:\mathrm{the}\:\mathrm{country}\:\mathrm{has}\:\:\mathrm{been}\:\mathrm{building}\:\:\mathrm{8}\:\:\mathrm{miles}\:\mathrm{of}\:\mathrm{new}\:\mathrm{paved} \\ $$$$\:\:\:\:\:\:\mathrm{roads}\:\mathrm{each}\:\mathrm{year}.\:\mathrm{At}\:\mathrm{this}\:\mathrm{rate},\:\:\mathrm{how}\:\:\mathrm{many}\:\mathrm{miles}\:\mathrm{of}\:\mathrm{paved}\:\mathrm{roads} \\ $$$$\:\:\:\:\:\:\mathrm{will}\:\mathrm{country}\:\mathrm{X}\:\mathrm{have}\:\mathrm{in}\:\mathrm{2030}? \\ $$

Question Number 21782    Answers: 0   Comments: 0

a_1 =1, a_(n+1) =(a_n /(√(a_n +n+1))) Σ_(n=1) ^∞ a_n =?

$${a}_{\mathrm{1}} =\mathrm{1},\:{a}_{{n}+\mathrm{1}} =\frac{{a}_{{n}} }{\sqrt{{a}_{{n}} +{n}+\mathrm{1}}} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}_{{n}} =? \\ $$

Question Number 21656    Answers: 0   Comments: 4

Let A(x) is a cubic polynomial and B(x) = (x −1)(x − 2)(x − 3) Find how many C(x) so that B(C(x)) = B(x) . A(x)

$$\mathrm{Let}\:{A}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{cubic}\:\mathrm{polynomial}\:\mathrm{and}\:{B}\left({x}\right)\:=\:\left({x}\:−\mathrm{1}\right)\left({x}\:−\:\mathrm{2}\right)\left({x}\:−\:\mathrm{3}\right) \\ $$$$\mathrm{Find}\:\mathrm{how}\:\mathrm{many}\:{C}\left({x}\right)\:\mathrm{so}\:\mathrm{that} \\ $$$${B}\left({C}\left({x}\right)\right)\:=\:{B}\left({x}\right)\:.\:{A}\left({x}\right) \\ $$

Question Number 21655    Answers: 1   Comments: 0

(((2017)),(( 0)) ) + (((2017)),(( 2)) ) + (((2017)),(( 4)) ) + (((2017)),(( 6)) ) + ... + (((2017)),((2016)) ) is equal to ...

$$\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{0}}\end{pmatrix}\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{2}}\end{pmatrix}\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{4}}\end{pmatrix}\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\:\:\:\:\mathrm{6}}\end{pmatrix}\:+\:...\:+\:\begin{pmatrix}{\mathrm{2017}}\\{\mathrm{2016}}\end{pmatrix} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:... \\ $$

Question Number 21611    Answers: 1   Comments: 0

Sin5° =?

$$\mathrm{Sin5}°\:=? \\ $$

Question Number 21574    Answers: 1   Comments: 0

The cyclic octagon ABCDEFGH has sides a, a, a, a, b, b, b, b respectively. Find the radius of the circle that circumscribes ABCDEFGH in terms of a and b.

$$\mathrm{The}\:\mathrm{cyclic}\:\mathrm{octagon}\:{ABCDEFGH}\:\mathrm{has} \\ $$$$\mathrm{sides}\:{a},\:{a},\:{a},\:{a},\:{b},\:{b},\:{b},\:{b}\:\mathrm{respectively}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{that} \\ $$$$\mathrm{circumscribes}\:{ABCDEFGH}\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:{a}\:\mathrm{and}\:{b}. \\ $$

Question Number 21571    Answers: 1   Comments: 0

ABCD is a cyclic quadrilateral; x, y, z are the distances of A from the lines BD, BC, CD respectively. Prove that ((BD)/x) = ((BC)/y) + ((CD)/z).

$${ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{cyclic}\:\mathrm{quadrilateral};\:{x},\:{y},\:{z} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{distances}\:\mathrm{of}\:{A}\:\mathrm{from}\:\mathrm{the}\:\mathrm{lines} \\ $$$${BD},\:{BC},\:{CD}\:\mathrm{respectively}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{{BD}}{{x}}\:=\:\frac{{BC}}{{y}}\:+\:\frac{{CD}}{{z}}. \\ $$

Question Number 21490    Answers: 1   Comments: 0

The kinetic energy of a body increases by 100%.Find the % increase in its momentum. please solve with explanations where necessary. Thanks.

$$\mathrm{The}\:\mathrm{kinetic}\:\mathrm{energy}\:\mathrm{of}\:\mathrm{a}\:\mathrm{body} \\ $$$$\mathrm{increases}\:\mathrm{by}\:\mathrm{100\%}.\mathrm{Find}\:\mathrm{the}\:\% \\ $$$$\mathrm{increase}\:\mathrm{in}\:\mathrm{its}\:\mathrm{momentum}. \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{solve}\:\mathrm{with}\:\mathrm{explanations} \\ $$$$\mathrm{where}\:\mathrm{necessary}.\:\mathrm{Thanks}. \\ $$

Question Number 21401    Answers: 0   Comments: 0

∫_0 ^∞ ((xdx)/(e^x +1))=?

$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{xdx}}{{e}^{{x}} +\mathrm{1}}=? \\ $$

Question Number 21310    Answers: 1   Comments: 8

What do you guys think of creating a Telegram group to discuss theory and more descriptive questions?

$$\mathrm{What}\:\mathrm{do}\:\mathrm{you}\:\mathrm{guys}\:\mathrm{think}\:\mathrm{of} \\ $$$$\mathrm{creating}\:\mathrm{a}\:\mathrm{Telegram}\:\mathrm{group}\:\mathrm{to} \\ $$$$\mathrm{discuss}\:\mathrm{theory}\:\mathrm{and}\:\mathrm{more}\:\mathrm{descriptive} \\ $$$$\mathrm{questions}? \\ $$

Question Number 21231    Answers: 0   Comments: 0

Consider the areas of the four triangles obtained by drawing the diagonals AC and BD of a trapezium ABCD. The product of these areas, taken two at time, are computed. If among the six products so obtained, two products are 1296 and 576, determine the square root of the maximum possible area of the trapezium to the nearest integer.

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{areas}\:\mathrm{of}\:\mathrm{the}\:\mathrm{four}\:\mathrm{triangles} \\ $$$$\mathrm{obtained}\:\mathrm{by}\:\mathrm{drawing}\:\mathrm{the}\:\mathrm{diagonals}\:{AC} \\ $$$$\mathrm{and}\:{BD}\:\mathrm{of}\:\mathrm{a}\:\mathrm{trapezium}\:{ABCD}.\:\mathrm{The} \\ $$$$\mathrm{product}\:\mathrm{of}\:\mathrm{these}\:\mathrm{areas},\:\mathrm{taken}\:\mathrm{two}\:\mathrm{at} \\ $$$$\mathrm{time},\:\mathrm{are}\:\mathrm{computed}.\:\mathrm{If}\:\mathrm{among}\:\mathrm{the}\:\mathrm{six} \\ $$$$\mathrm{products}\:\mathrm{so}\:\mathrm{obtained},\:\mathrm{two}\:\mathrm{products}\:\mathrm{are} \\ $$$$\mathrm{1296}\:\mathrm{and}\:\mathrm{576},\:\mathrm{determine}\:\mathrm{the}\:\mathrm{square} \\ $$$$\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{possible}\:\mathrm{area}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{trapezium}\:\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{integer}. \\ $$

Question Number 21228    Answers: 0   Comments: 0

Let P be an interior point of a triangle ABC whose sidelengths are 26, 65, 78. The line through P parallel to BC meets AB in K and AC in L. The line through P parallel to CA meets BC in M and BA in N. The line through P parallel to AB meets CA in S and CB in T. If KL, MN, ST, are of equal lengths, find this common length.

$$\mathrm{Let}\:{P}\:\mathrm{be}\:\mathrm{an}\:\mathrm{interior}\:\mathrm{point}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle} \\ $$$${ABC}\:\mathrm{whose}\:\mathrm{sidelengths}\:\mathrm{are}\:\mathrm{26},\:\mathrm{65},\:\mathrm{78}. \\ $$$$\mathrm{The}\:\mathrm{line}\:\mathrm{through}\:{P}\:\mathrm{parallel}\:\mathrm{to}\:{BC}\:\mathrm{meets} \\ $$$${AB}\:\mathrm{in}\:{K}\:\mathrm{and}\:{AC}\:\mathrm{in}\:{L}.\:\mathrm{The}\:\mathrm{line}\:\mathrm{through} \\ $$$${P}\:\mathrm{parallel}\:\mathrm{to}\:{CA}\:\mathrm{meets}\:{BC}\:\mathrm{in}\:{M}\:\mathrm{and}\:{BA} \\ $$$$\mathrm{in}\:{N}.\:\mathrm{The}\:\mathrm{line}\:\mathrm{through}\:{P}\:\mathrm{parallel}\:\mathrm{to}\:{AB} \\ $$$$\mathrm{meets}\:{CA}\:\mathrm{in}\:{S}\:\mathrm{and}\:{CB}\:\mathrm{in}\:{T}.\:\mathrm{If}\:{KL},\:{MN}, \\ $$$${ST},\:\mathrm{are}\:\mathrm{of}\:\mathrm{equal}\:\mathrm{lengths},\:\mathrm{find}\:\mathrm{this} \\ $$$$\mathrm{common}\:\mathrm{length}. \\ $$

Question Number 21001    Answers: 0   Comments: 0

determinant (((a 1 1)),((1 b 1)),((1 1 c)))>0 then showthat abc>−8−99

$$\begin{vmatrix}{{a}\:\mathrm{1}\:\mathrm{1}}\\{\mathrm{1}\:{b}\:\mathrm{1}}\\{\mathrm{1}\:\mathrm{1}\:{c}}\end{vmatrix}>\mathrm{0}\:{then}\:{showthat}\:{abc}>−\mathrm{8}−\mathrm{99} \\ $$

Question Number 20953    Answers: 0   Comments: 2

Question Number 20944    Answers: 1   Comments: 0

Question Number 20599    Answers: 1   Comments: 0

In a rectangle ABCD, E is the midpoint of AB; F is a point on AC such that BF is perpendicular to AC; and FE perpendicular to BD. Suppose BC = 8(√3). Find AB.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{rectangle}\:{ABCD},\:{E}\:\mathrm{is}\:\mathrm{the}\:\mathrm{midpoint} \\ $$$$\mathrm{of}\:{AB};\:{F}\:\mathrm{is}\:\mathrm{a}\:\mathrm{point}\:\mathrm{on}\:{AC}\:\mathrm{such}\:\mathrm{that}\:{BF} \\ $$$$\mathrm{is}\:\mathrm{perpendicular}\:\mathrm{to}\:{AC};\:\mathrm{and}\:{FE} \\ $$$$\mathrm{perpendicular}\:\mathrm{to}\:{BD}.\:\mathrm{Suppose}\:{BC}\:=\:\mathrm{8}\sqrt{\mathrm{3}}. \\ $$$$\mathrm{Find}\:{AB}. \\ $$

Question Number 20545    Answers: 0   Comments: 1

Let ABC be an acute-angled triangle with AC ≠ BC and let O be the circumcenter and F be the foot of altitude through C. Further, let X and Y be the feet of perpendiculars dropped from A and B respectively to (the extension of) CO. Prove that FY ⊥ CA using that ∠CFY = ∠CBY = ∠CAF.

$$\mathrm{Let}\:\mathrm{ABC}\:\mathrm{be}\:\mathrm{an}\:\mathrm{acute}-\mathrm{angled}\:\mathrm{triangle} \\ $$$$\mathrm{with}\:\mathrm{AC}\:\neq\:\mathrm{BC}\:\mathrm{and}\:\mathrm{let}\:\mathrm{O}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{circumcenter}\:\mathrm{and}\:\mathrm{F}\:\mathrm{be}\:\mathrm{the}\:\mathrm{foot}\:\mathrm{of} \\ $$$$\mathrm{altitude}\:\mathrm{through}\:\mathrm{C}.\:\mathrm{Further},\:\mathrm{let}\:\mathrm{X}\:\mathrm{and} \\ $$$$\mathrm{Y}\:\mathrm{be}\:\mathrm{the}\:\mathrm{feet}\:\mathrm{of}\:\mathrm{perpendiculars}\:\mathrm{dropped} \\ $$$$\mathrm{from}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{respectively}\:\mathrm{to}\:\left(\mathrm{the}\right. \\ $$$$\left.\mathrm{extension}\:\mathrm{of}\right)\:\mathrm{CO}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{FY}\:\bot\:\mathrm{CA} \\ $$$$\mathrm{using}\:\mathrm{that}\:\angle\mathrm{CFY}\:=\:\angle\mathrm{CBY}\:=\:\angle\mathrm{CAF}. \\ $$

Question Number 20187    Answers: 0   Comments: 1

t_n =(t_(n−1) /n^2 ), t_1 =3;t_2 ,t_3 ,(n≥2)

$${t}_{{n}} =\frac{{t}_{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} },\:{t}_{\mathrm{1}} =\mathrm{3};{t}_{\mathrm{2}} ,{t}_{\mathrm{3}} ,\left({n}\geqslant\mathrm{2}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 20156    Answers: 1   Comments: 0

Solve: inverse laplace. L^(−1) ((s/(s^(2 ) + 6s + 25)))

$$\mathrm{Solve}:\:\mathrm{inverse}\:\mathrm{laplace}.\:\:\:\:\mathrm{L}^{−\mathrm{1}} \left(\frac{\mathrm{s}}{\mathrm{s}^{\mathrm{2}\:} +\:\mathrm{6s}\:+\:\mathrm{25}}\right) \\ $$

Question Number 20131    Answers: 1   Comments: 4

In rectangle ABCD,AB=8, BC=20.P is a point on AD so that ∠BPC=90°.If r_1 ,r_2 ,r_3 are the radii of the incircles of APB, BPC, and CPD. find r_1 +r_2 +r_3

$${In}\:{rectangle}\:{ABCD},{AB}=\mathrm{8}, \\ $$$${BC}=\mathrm{20}.{P}\:{is}\:{a}\:{point}\:{on}\:{AD}\:{so} \\ $$$${that}\:\angle{BPC}=\mathrm{90}°.{If}\:{r}_{\mathrm{1}} ,{r}_{\mathrm{2}} ,{r}_{\mathrm{3}} \:{are}\:{the} \\ $$$${radii}\:{of}\:{the}\:{incircles}\:{of}\:{APB}, \\ $$$${BPC},\:{and}\:{CPD}.\:{find}\:{r}_{\mathrm{1}} +{r}_{\mathrm{2}} +{r}_{\mathrm{3}} \\ $$

  Pg 101      Pg 102      Pg 103      Pg 104      Pg 105      Pg 106      Pg 107      Pg 108      Pg 109      Pg 110   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com