Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 105

Question Number 23752    Answers: 1   Comments: 0

∫_1 ^2 x^3 +1=?

$$\int_{\mathrm{1}} ^{\mathrm{2}} {x}^{\mathrm{3}} +\mathrm{1}=? \\ $$

Question Number 23679    Answers: 2   Comments: 0

Question Number 23677    Answers: 0   Comments: 0

solve lim_(x→inf+) ∫^(2(√x)) _(2sin(1/x)) ((2t^4 +1)/((t−3)(t^3 +3))) dt

$${solve} \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\underset{{x}\rightarrow{inf}+} {\mathrm{li}{m}}\:\:\underset{\mathrm{2}{sin}\frac{\mathrm{1}}{{x}}} {\int}^{\mathrm{2}\sqrt{{x}}} \frac{\mathrm{2}{t}^{\mathrm{4}} +\mathrm{1}}{\left({t}−\mathrm{3}\right)\left({t}^{\mathrm{3}} +\mathrm{3}\right)}\:{dt} \\ $$

Question Number 23663    Answers: 1   Comments: 3

solve ∫^1_ _(−1) x^2 d(lnx)

$${solve} \\ $$$$ \\ $$$$\underset{−\mathrm{1}} {\int}^{\mathrm{1}_{} } {x}^{\mathrm{2}} {d}\left({lnx}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 23592    Answers: 1   Comments: 0

Let ABC be a triangle with AB = AC and ∠BAC = 30°. Let A′ be the reflection of A in the line BC; B′ be the reflection of B in the line CA; C′ be the reflection of C in the line AB. Show that A′, B′, C′ form the vertices of an equilateral triangle.

$$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:{AB}\:=\:{AC} \\ $$$$\mathrm{and}\:\angle{BAC}\:=\:\mathrm{30}°.\:\mathrm{Let}\:{A}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{A}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{BC};\:{B}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{B}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{CA};\:{C}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{C}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{AB}.\:\mathrm{Show}\:\mathrm{that}\:{A}',\:{B}',\:{C}' \\ $$$$\mathrm{form}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral} \\ $$$$\mathrm{triangle}. \\ $$

Question Number 23539    Answers: 1   Comments: 0

∫tan^6 x dx

$$\int\mathrm{tan}\:^{\mathrm{6}} \mathrm{x}\:\mathrm{dx} \\ $$

Question Number 23477    Answers: 0   Comments: 0

Find the value of x, ∫_(−∞) ^x dx = ∫∣± sinh cot ln (15−(√(33+x)))∣ dx

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}, \\ $$$$\:\:\:\:\:\:\:\int_{−\infty} ^{{x}} {d}\mathrm{x}\:=\:\int\mid\pm\:\mathrm{sinh}\:\mathrm{cot}\:\mathrm{ln}\:\left(\mathrm{15}−\sqrt{\mathrm{33}+{x}}\right)\mid\:\mathrm{dx} \\ $$

Question Number 23418    Answers: 1   Comments: 0

∫sec^2 (√x) /(√x) dx

$$\int\mathrm{sec}\:^{\mathrm{2}} \sqrt{\mathrm{x}}\:/\sqrt{\mathrm{x}}\:\mathrm{dx} \\ $$

Question Number 23408    Answers: 1   Comments: 0

Question Number 23317    Answers: 1   Comments: 0

∫sin^3 x cos x dx

$$\int\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}\:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx} \\ $$

Question Number 23312    Answers: 1   Comments: 2

Question Number 23262    Answers: 0   Comments: 2

Question Number 23251    Answers: 0   Comments: 1

Question Number 23226    Answers: 1   Comments: 4

Question Number 23253    Answers: 1   Comments: 8

Question Number 23179    Answers: 2   Comments: 1

Question Number 23212    Answers: 1   Comments: 1

Question Number 23170    Answers: 0   Comments: 2

Question Number 23138    Answers: 1   Comments: 1

Question Number 23133    Answers: 1   Comments: 0

Find the minimum surface area of a solid circular cylinder , if its volume is 16π cm^3 (leave your answer in terms of π)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{surface}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{solid}\:\mathrm{circular}\:\mathrm{cylinder}\:,\:\:\mathrm{if}\:\mathrm{its}\:\mathrm{volume}\:\mathrm{is} \\ $$$$\mathrm{16}\pi\:\mathrm{cm}^{\mathrm{3}} \:\:\:\left(\mathrm{leave}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\pi\right) \\ $$

Question Number 23162    Answers: 1   Comments: 1

Question Number 23122    Answers: 0   Comments: 3

Question Number 23050    Answers: 1   Comments: 0

how can demonstred that ∀a,b,c∈N a^2 +b^2 =c^2 ⇒ abc≡0[60]

$${how}\:{can}\:{demonstred}\:{that}\: \\ $$$$\:\:\:\forall{a},{b},{c}\in\mathbb{N}\: \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} \:\:\Rightarrow \\ $$$${abc}\equiv\mathrm{0}\left[\mathrm{60}\right]\:\: \\ $$

Question Number 23034    Answers: 0   Comments: 1

Question Number 22896    Answers: 0   Comments: 1

how can demonstred 17^(4n+1) +3×9^(2n+1) ≡0[11]

$${how}\:{can}\:{demonstred} \\ $$$$\mathrm{17}^{\mathrm{4}{n}+\mathrm{1}} +\mathrm{3}×\mathrm{9}^{\mathrm{2}{n}+\mathrm{1}} \equiv\mathrm{0}\left[\mathrm{11}\right] \\ $$

Question Number 22787    Answers: 0   Comments: 2

sin^(−1) (sin 10)=10 or 3π−10 Ans is 3π−10 How

$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\mathrm{10}\right)=\mathrm{10}\:\mathrm{or}\:\mathrm{3}\pi−\mathrm{10} \\ $$$$\mathrm{Ans}\:\mathrm{is}\:\mathrm{3}\pi−\mathrm{10}\:\:\:\mathrm{How} \\ $$

  Pg 100      Pg 101      Pg 102      Pg 103      Pg 104      Pg 105      Pg 106      Pg 107      Pg 108      Pg 109   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com