Question and Answers Forum
All Questions Topic List
GeometryQuestion and Answers: Page 105
Question Number 23752 Answers: 1 Comments: 0
$$\int_{\mathrm{1}} ^{\mathrm{2}} {x}^{\mathrm{3}} +\mathrm{1}=? \\ $$
Question Number 23679 Answers: 2 Comments: 0
Question Number 23677 Answers: 0 Comments: 0
$${solve} \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\underset{{x}\rightarrow{inf}+} {\mathrm{li}{m}}\:\:\underset{\mathrm{2}{sin}\frac{\mathrm{1}}{{x}}} {\int}^{\mathrm{2}\sqrt{{x}}} \frac{\mathrm{2}{t}^{\mathrm{4}} +\mathrm{1}}{\left({t}−\mathrm{3}\right)\left({t}^{\mathrm{3}} +\mathrm{3}\right)}\:{dt} \\ $$
Question Number 23663 Answers: 1 Comments: 3
$${solve} \\ $$$$ \\ $$$$\underset{−\mathrm{1}} {\int}^{\mathrm{1}_{} } {x}^{\mathrm{2}} {d}\left({lnx}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 23592 Answers: 1 Comments: 0
$$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{with}\:{AB}\:=\:{AC} \\ $$$$\mathrm{and}\:\angle{BAC}\:=\:\mathrm{30}°.\:\mathrm{Let}\:{A}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{A}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{BC};\:{B}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{B}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{CA};\:{C}'\:\mathrm{be}\:\mathrm{the}\:\mathrm{reflection} \\ $$$$\mathrm{of}\:{C}\:\mathrm{in}\:\mathrm{the}\:\mathrm{line}\:{AB}.\:\mathrm{Show}\:\mathrm{that}\:{A}',\:{B}',\:{C}' \\ $$$$\mathrm{form}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equilateral} \\ $$$$\mathrm{triangle}. \\ $$
Question Number 23539 Answers: 1 Comments: 0
$$\int\mathrm{tan}\:^{\mathrm{6}} \mathrm{x}\:\mathrm{dx} \\ $$
Question Number 23477 Answers: 0 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{x}, \\ $$$$\:\:\:\:\:\:\:\int_{−\infty} ^{{x}} {d}\mathrm{x}\:=\:\int\mid\pm\:\mathrm{sinh}\:\mathrm{cot}\:\mathrm{ln}\:\left(\mathrm{15}−\sqrt{\mathrm{33}+{x}}\right)\mid\:\mathrm{dx} \\ $$
Question Number 23418 Answers: 1 Comments: 0
$$\int\mathrm{sec}\:^{\mathrm{2}} \sqrt{\mathrm{x}}\:/\sqrt{\mathrm{x}}\:\mathrm{dx} \\ $$
Question Number 23408 Answers: 1 Comments: 0
Question Number 23317 Answers: 1 Comments: 0
$$\int\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}\:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx} \\ $$
Question Number 23312 Answers: 1 Comments: 2
Question Number 23262 Answers: 0 Comments: 2
Question Number 23251 Answers: 0 Comments: 1
Question Number 23226 Answers: 1 Comments: 4
Question Number 23253 Answers: 1 Comments: 8
Question Number 23179 Answers: 2 Comments: 1
Question Number 23212 Answers: 1 Comments: 1
Question Number 23170 Answers: 0 Comments: 2
Question Number 23138 Answers: 1 Comments: 1
Question Number 23133 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{surface}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{solid}\:\mathrm{circular}\:\mathrm{cylinder}\:,\:\:\mathrm{if}\:\mathrm{its}\:\mathrm{volume}\:\mathrm{is} \\ $$$$\mathrm{16}\pi\:\mathrm{cm}^{\mathrm{3}} \:\:\:\left(\mathrm{leave}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\pi\right) \\ $$
Question Number 23162 Answers: 1 Comments: 1
Question Number 23122 Answers: 0 Comments: 3
Question Number 23050 Answers: 1 Comments: 0
$${how}\:{can}\:{demonstred}\:{that}\: \\ $$$$\:\:\:\forall{a},{b},{c}\in\mathbb{N}\: \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} \:\:\Rightarrow \\ $$$${abc}\equiv\mathrm{0}\left[\mathrm{60}\right]\:\: \\ $$
Question Number 23034 Answers: 0 Comments: 1
Question Number 22896 Answers: 0 Comments: 1
$${how}\:{can}\:{demonstred} \\ $$$$\mathrm{17}^{\mathrm{4}{n}+\mathrm{1}} +\mathrm{3}×\mathrm{9}^{\mathrm{2}{n}+\mathrm{1}} \equiv\mathrm{0}\left[\mathrm{11}\right] \\ $$
Question Number 22787 Answers: 0 Comments: 2
$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\mathrm{10}\right)=\mathrm{10}\:\mathrm{or}\:\mathrm{3}\pi−\mathrm{10} \\ $$$$\mathrm{Ans}\:\mathrm{is}\:\mathrm{3}\pi−\mathrm{10}\:\:\:\mathrm{How} \\ $$
Pg 100 Pg 101 Pg 102 Pg 103 Pg 104 Pg 105 Pg 106 Pg 107 Pg 108 Pg 109
Terms of Service
Privacy Policy
Contact: info@tinkutara.com