Question and Answers Forum

All Questions   Topic List

GeometryQuestion and Answers: Page 105

Question Number 23226    Answers: 1   Comments: 4

Question Number 23253    Answers: 1   Comments: 8

Question Number 23179    Answers: 2   Comments: 1

Question Number 23212    Answers: 1   Comments: 1

Question Number 23170    Answers: 0   Comments: 2

Question Number 23138    Answers: 1   Comments: 1

Question Number 23133    Answers: 1   Comments: 0

Find the minimum surface area of a solid circular cylinder , if its volume is 16π cm^3 (leave your answer in terms of π)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{surface}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\:\mathrm{solid}\:\mathrm{circular}\:\mathrm{cylinder}\:,\:\:\mathrm{if}\:\mathrm{its}\:\mathrm{volume}\:\mathrm{is} \\ $$$$\mathrm{16}\pi\:\mathrm{cm}^{\mathrm{3}} \:\:\:\left(\mathrm{leave}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\pi\right) \\ $$

Question Number 23162    Answers: 1   Comments: 1

Question Number 23122    Answers: 0   Comments: 3

Question Number 23050    Answers: 1   Comments: 0

how can demonstred that ∀a,b,c∈N a^2 +b^2 =c^2 ⇒ abc≡0[60]

$${how}\:{can}\:{demonstred}\:{that}\: \\ $$$$\:\:\:\forall{a},{b},{c}\in\mathbb{N}\: \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} \:\:\Rightarrow \\ $$$${abc}\equiv\mathrm{0}\left[\mathrm{60}\right]\:\: \\ $$

Question Number 23034    Answers: 0   Comments: 1

Question Number 22896    Answers: 0   Comments: 1

how can demonstred 17^(4n+1) +3×9^(2n+1) ≡0[11]

$${how}\:{can}\:{demonstred} \\ $$$$\mathrm{17}^{\mathrm{4}{n}+\mathrm{1}} +\mathrm{3}×\mathrm{9}^{\mathrm{2}{n}+\mathrm{1}} \equiv\mathrm{0}\left[\mathrm{11}\right] \\ $$

Question Number 22787    Answers: 0   Comments: 2

sin^(−1) (sin 10)=10 or 3π−10 Ans is 3π−10 How

$$\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\mathrm{10}\right)=\mathrm{10}\:\mathrm{or}\:\mathrm{3}\pi−\mathrm{10} \\ $$$$\mathrm{Ans}\:\mathrm{is}\:\mathrm{3}\pi−\mathrm{10}\:\:\:\mathrm{How} \\ $$

Question Number 22661    Answers: 1   Comments: 1

Question Number 23796    Answers: 1   Comments: 0

∫((2sinx+3cosx)/(3sinx+4cosx)) dx

$$\int\frac{\mathrm{2sinx}+\mathrm{3cosx}}{\mathrm{3sinx}+\mathrm{4cosx}}\:\mathrm{dx} \\ $$

Question Number 22545    Answers: 2   Comments: 0

∫(x^(1/2) /(x^(1/2) −x^(1/3) ))dx=

$$\int\frac{\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} −\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} }\mathrm{dx}= \\ $$$$ \\ $$

Question Number 22525    Answers: 0   Comments: 4

Question Number 22524    Answers: 0   Comments: 1

toutes lessolutions du systeme

$${toutes}\:{lessolutions}\:{du}\:{systeme} \\ $$

Question Number 22522    Answers: 0   Comments: 1

Happy Diwali Friends !! :)

$$\mathrm{H}{appy}\: \\ $$$${Diwali} \\ $$$$\left.{Friends}\:!!\::\right) \\ $$

Question Number 22516    Answers: 0   Comments: 1

toutes les solutions ?

$${toutes}\:{les}\:{solutions}\:? \\ $$

Question Number 22515    Answers: 0   Comments: 0

In a quadrilateral ABCD, it is given that AB is parallel to CD and the diagonals AC and BD are perpendicular to each other. Show that (a) AD.BC ≥ AB.CD; (b) AD + BC ≥ AB + CD.

$$\mathrm{In}\:\mathrm{a}\:\mathrm{quadrilateral}\:{ABCD},\:\mathrm{it}\:\mathrm{is}\:\mathrm{given} \\ $$$$\mathrm{that}\:{AB}\:\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:{CD}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{diagonals}\:{AC}\:\mathrm{and}\:{BD}\:\mathrm{are}\:\mathrm{perpendicular} \\ $$$$\mathrm{to}\:\mathrm{each}\:\mathrm{other}. \\ $$$$\mathrm{Show}\:\mathrm{that} \\ $$$$\left(\mathrm{a}\right)\:{AD}.{BC}\:\geqslant\:{AB}.{CD}; \\ $$$$\left(\mathrm{b}\right)\:{AD}\:+\:{BC}\:\geqslant\:{AB}\:+\:{CD}. \\ $$

Question Number 22478    Answers: 0   Comments: 1

{ ((x+y^2 +z^3 =3)),((y+z^2 +x^3 =3)),((z+x^2 +z^3 =3)) :} trouver les solutions positives

$$\begin{cases}{{x}+{y}^{\mathrm{2}} +{z}^{\mathrm{3}} =\mathrm{3}}\\{{y}+{z}^{\mathrm{2}} +{x}^{\mathrm{3}} =\mathrm{3}}\\{{z}+{x}^{\mathrm{2}} +{z}^{\mathrm{3}} =\mathrm{3}}\end{cases} \\ $$$${trouver}\:{les}\:{solutions}\:{positives} \\ $$$$ \\ $$

Question Number 22361    Answers: 0   Comments: 0

Question Number 23106    Answers: 0   Comments: 0

Is 2(x+1) had a x=3

$${Is}\:\mathrm{2}\left({x}+\mathrm{1}\right)\:{had}\:{a}\:{x}=\mathrm{3} \\ $$

Question Number 22112    Answers: 1   Comments: 0

A boy ran around a circular part of radius 14m in 15s. Calculate the average velocity and the average speed.

$$\mathrm{A}\:\mathrm{boy}\:\mathrm{ran}\:\mathrm{around}\:\mathrm{a}\:\mathrm{circular}\:\mathrm{part}\:\mathrm{of}\:\mathrm{radius}\:\mathrm{14m}\:\mathrm{in}\:\mathrm{15s}.\:\mathrm{Calculate}\:\mathrm{the}\: \\ $$$$\mathrm{average}\:\mathrm{velocity}\:\mathrm{and}\:\mathrm{the}\:\mathrm{average}\:\mathrm{speed}. \\ $$

Question Number 22079    Answers: 0   Comments: 1

Let ABC be a triangle and h_a the altitude through A. Prove that (b + c)^2 ≥ a^2 + 4h_a ^2 . (As usual a, b, c denote the sides BC, CA, AB respectively.)

$$\mathrm{Let}\:{ABC}\:\mathrm{be}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{and}\:{h}_{{a}} \:\mathrm{the} \\ $$$$\mathrm{altitude}\:\mathrm{through}\:{A}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\left({b}\:+\:{c}\right)^{\mathrm{2}} \:\geqslant\:{a}^{\mathrm{2}} \:+\:\mathrm{4}{h}_{{a}} ^{\mathrm{2}} . \\ $$$$\left(\mathrm{As}\:\mathrm{usual}\:{a},\:{b},\:{c}\:\mathrm{denote}\:\mathrm{the}\:\mathrm{sides}\:{BC},\right. \\ $$$$\left.{CA},\:{AB}\:\mathrm{respectively}.\right) \\ $$

  Pg 100      Pg 101      Pg 102      Pg 103      Pg 104      Pg 105      Pg 106      Pg 107      Pg 108      Pg 109   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com