Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 204019 by mnjuly1970 last updated on 04/Feb/24

       G is a group :       prove that :  (G/(Z (G ))) ≅ Inn(G )      Where , Inn(G)= {f ∣ f: G →^(f is an Automorphism)  G}

$$ \\ $$$$\:\:\:\:\:{G}\:{is}\:{a}\:{group}\:: \\ $$$$\:\:\:\:\:{prove}\:{that}\::\:\:\frac{{G}}{{Z}\:\left({G}\:\right)}\:\cong\:{Inn}\left({G}\:\right) \\ $$$$\:\:\:\:{Where}\:,\:{Inn}\left({G}\right)=\:\left\{{f}\:\mid\:{f}:\:{G}\:\overset{{f}\:{is}\:{an}\:{Automorphism}} {\rightarrow}\:{G}\right\} \\ $$$$ \\ $$

Commented by mokys last updated on 04/Feb/24

Commented by mnjuly1970 last updated on 05/Feb/24

thanks alot sir..so nice proof

$${thanks}\:{alot}\:{sir}..{so}\:{nice}\:{proof} \\ $$$$\:\cancel{ } \\ $$

Answered by witcher3 last updated on 04/Feb/24

G→Inn(G)  x→^f_x  gxg^−   x→g→gxg^−   kerf_x ={x∈G∣gxg^− =x}⇔{x∈G∣gx=xg}=Z(G)  use isomoprohism Theorem⇒ f surjective  G→^f G′⇒(G/(kerf(G)))≊G′  (G/(ker(f)))≃Im(f)⇒(G/(Z(G)))≊Inn(G)

$$\mathrm{G}\rightarrow\mathrm{Inn}\left(\mathrm{G}\right) \\ $$$$\mathrm{x}\overset{\mathrm{f}_{\mathrm{x}} } {\rightarrow}\mathrm{gxg}^{−} \\ $$$$\mathrm{x}\rightarrow\mathrm{g}\rightarrow\mathrm{gxg}^{−} \\ $$$$\mathrm{kerf}_{\mathrm{x}} =\left\{\mathrm{x}\in\mathrm{G}\mid\mathrm{gxg}^{−} =\mathrm{x}\right\}\Leftrightarrow\left\{\mathrm{x}\in\mathrm{G}\mid\mathrm{gx}=\mathrm{xg}\right\}=\mathrm{Z}\left(\mathrm{G}\right) \\ $$$$\mathrm{use}\:\mathrm{isomoprohism}\:\mathrm{Theorem}\Rightarrow\:\mathrm{f}\:\mathrm{surjective} \\ $$$$\mathrm{G}\overset{\mathrm{f}} {\rightarrow}\mathrm{G}'\Rightarrow\frac{\mathrm{G}}{\mathrm{kerf}\left(\mathrm{G}\right)}\approxeq\mathrm{G}' \\ $$$$\frac{\mathrm{G}}{\mathrm{ker}\left(\mathrm{f}\right)}\simeq\mathrm{Im}\left(\mathrm{f}\right)\Rightarrow\frac{\mathrm{G}}{\mathrm{Z}\left(\mathrm{G}\right)}\approxeq\mathrm{Inn}\left(\mathrm{G}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 04/Feb/24

 so nice solution sir wicher  thx alot

$$\:{so}\:{nice}\:{solution}\:{sir}\:{wicher} \\ $$$${thx}\:{alot} \\ $$$$\:\: \\ $$

Commented by witcher3 last updated on 04/Feb/24

withe pleasur sir   have a nice day

$$\mathrm{withe}\:\mathrm{pleasur}\:\mathrm{sir}\: \\ $$$$\mathrm{have}\:\mathrm{a}\:\mathrm{nice}\:\mathrm{day} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com