Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 46481 by MrW3 last updated on 27/Oct/18

Four spheres with radii a,b,c and d  touch each other. Find the radii of  their circumscribed sphere (R) and  their inscribed sphere (r) in terms of   a,b,c and d.

$${Four}\:{spheres}\:{with}\:{radii}\:{a},{b},{c}\:{and}\:{d} \\ $$$${touch}\:{each}\:{other}.\:{Find}\:{the}\:{radii}\:{of} \\ $$$${their}\:{circumscribed}\:{sphere}\:\left({R}\right)\:{and} \\ $$$${their}\:{inscribed}\:{sphere}\:\left({r}\right)\:{in}\:{terms}\:{of}\: \\ $$$${a},{b},{c}\:{and}\:{d}. \\ $$

Commented by MJS last updated on 27/Oct/18

plenty of cases. 3 spheres similar to 3 circles:  3^(rd)  one could be very small compared to the  2 others, then the 4^(th)  is still possible but no  circumscribed sphere could exist, even not  any sphere or plain touching the 4 spheres  from the outside.  inscribed sphere doesn′t exist in some cases  too. imagine three spheres: their centers  are in a plain; the 4^(th)  one could exactly fit  into the gap between them.

$$\mathrm{plenty}\:\mathrm{of}\:\mathrm{cases}.\:\mathrm{3}\:\mathrm{spheres}\:\mathrm{similar}\:\mathrm{to}\:\mathrm{3}\:\mathrm{circles}: \\ $$$$\mathrm{3}^{\mathrm{rd}} \:\mathrm{one}\:\mathrm{could}\:\mathrm{be}\:\mathrm{very}\:\mathrm{small}\:\mathrm{compared}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{2}\:\mathrm{others},\:\mathrm{then}\:\mathrm{the}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{is}\:\mathrm{still}\:\mathrm{possible}\:\mathrm{but}\:\mathrm{no} \\ $$$$\mathrm{circumscribed}\:\mathrm{sphere}\:\mathrm{could}\:\mathrm{exist},\:\mathrm{even}\:\mathrm{not} \\ $$$$\mathrm{any}\:\mathrm{sphere}\:\mathrm{or}\:\mathrm{plain}\:\mathrm{touching}\:\mathrm{the}\:\mathrm{4}\:\mathrm{spheres} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{outside}. \\ $$$$\mathrm{inscribed}\:\mathrm{sphere}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{exist}\:\mathrm{in}\:\mathrm{some}\:\mathrm{cases} \\ $$$$\mathrm{too}.\:\mathrm{imagine}\:\mathrm{three}\:\mathrm{spheres}:\:\mathrm{their}\:\mathrm{centers} \\ $$$$\mathrm{are}\:\mathrm{in}\:\mathrm{a}\:\mathrm{plain};\:\mathrm{the}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{one}\:\mathrm{could}\:\mathrm{exactly}\:\mathrm{fit} \\ $$$$\mathrm{into}\:\mathrm{the}\:\mathrm{gap}\:\mathrm{between}\:\mathrm{them}. \\ $$

Commented by MrW3 last updated on 27/Oct/18

thank you sir!  generally you are right.  but one can treat at first the case that such  a sphere exists. from the result one can  then see what is the condition that such  a sphere exists. let′s come back to the  question with three circles. from the  results  R=(1/(2(√((1/(ab))+(1/(bc))+(1/(ca))))−((1/a)+(1/b)+(1/c))))  r=(1/(2(√((1/(ab))+(1/(bc))+(1/(ca))))+(1/a)+(1/b)+(1/c)))  we can see that the inscribed circle  always exits since we get a valuefor  r with any values of a,b and c. but  the circumcircle doesn′t always exist.  if 2(√((1/(ab))+(1/(bc))+(1/(ca))))=(1/a)+(1/b)+(1/c) there is  no circumcircle at all, since R=∞. and  if 2(√((1/(ab))+(1/(bc))+(1/(ca))))<(1/a)+(1/b)+(1/c) there is  a “circumcircle”, but it tangents the  three circles from outside, since in this  case the value of R is negative.    so my opinion is that we should start  with the general case and then see  which exceptions there are.

$${thank}\:{you}\:{sir}! \\ $$$${generally}\:{you}\:{are}\:{right}. \\ $$$${but}\:{one}\:{can}\:{treat}\:{at}\:{first}\:{the}\:{case}\:{that}\:{such} \\ $$$${a}\:{sphere}\:{exists}.\:{from}\:{the}\:{result}\:{one}\:{can} \\ $$$${then}\:{see}\:{what}\:{is}\:{the}\:{condition}\:{that}\:{such} \\ $$$${a}\:{sphere}\:{exists}.\:{let}'{s}\:{come}\:{back}\:{to}\:{the} \\ $$$${question}\:{with}\:{three}\:{circles}.\:{from}\:{the} \\ $$$${results} \\ $$$${R}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\frac{\mathrm{1}}{{ab}}+\frac{\mathrm{1}}{{bc}}+\frac{\mathrm{1}}{{ca}}}−\left(\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\right)} \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\frac{\mathrm{1}}{{ab}}+\frac{\mathrm{1}}{{bc}}+\frac{\mathrm{1}}{{ca}}}+\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}} \\ $$$${we}\:{can}\:{see}\:{that}\:{the}\:{inscribed}\:{circle} \\ $$$${always}\:{exits}\:{since}\:{we}\:{get}\:{a}\:{valuefor} \\ $$$${r}\:{with}\:{any}\:{values}\:{of}\:{a},{b}\:{and}\:{c}.\:{but} \\ $$$${the}\:{circumcircle}\:{doesn}'{t}\:{always}\:{exist}. \\ $$$${if}\:\mathrm{2}\sqrt{\frac{\mathrm{1}}{{ab}}+\frac{\mathrm{1}}{{bc}}+\frac{\mathrm{1}}{{ca}}}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\:{there}\:{is} \\ $$$${no}\:{circumcircle}\:{at}\:{all},\:{since}\:{R}=\infty.\:{and} \\ $$$${if}\:\mathrm{2}\sqrt{\frac{\mathrm{1}}{{ab}}+\frac{\mathrm{1}}{{bc}}+\frac{\mathrm{1}}{{ca}}}<\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\:{there}\:{is} \\ $$$${a}\:``{circumcircle}'',\:{but}\:{it}\:{tangents}\:{the} \\ $$$${three}\:{circles}\:{from}\:{outside},\:{since}\:{in}\:{this} \\ $$$${case}\:{the}\:{value}\:{of}\:{R}\:{is}\:{negative}. \\ $$$$ \\ $$$${so}\:{my}\:{opinion}\:{is}\:{that}\:{we}\:{should}\:{start} \\ $$$${with}\:{the}\:{general}\:{case}\:{and}\:{then}\:{see} \\ $$$${which}\:{exceptions}\:{there}\:{are}. \\ $$

Commented by MJS last updated on 27/Oct/18

you′re right  we can start with a≥b≥c≥d  put C_a = ((0),(0),(0) )  C_b = ((0),(y_b ),(0) )  C_c = ((x_c ),(y_c ),(0) )  (I′m a coordinate−method−lover)  the results of the 3−circle−problem fit here  C_d = ((x_d ),(y_d ),(z_d ) )  and we must find out the borders for c  and d  depending on a and b so that a circumsphere  exists.

$$\mathrm{you}'\mathrm{re}\:\mathrm{right} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{start}\:\mathrm{with}\:{a}\geqslant{b}\geqslant{c}\geqslant{d} \\ $$$$\mathrm{put}\:{C}_{{a}} =\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{C}_{{b}} =\begin{pmatrix}{\mathrm{0}}\\{{y}_{{b}} }\\{\mathrm{0}}\end{pmatrix}\:\:{C}_{{c}} =\begin{pmatrix}{{x}_{{c}} }\\{{y}_{{c}} }\\{\mathrm{0}}\end{pmatrix} \\ $$$$\left(\mathrm{I}'\mathrm{m}\:\mathrm{a}\:\mathrm{coordinate}−\mathrm{method}−\mathrm{lover}\right) \\ $$$$\mathrm{the}\:\mathrm{results}\:\mathrm{of}\:\mathrm{the}\:\mathrm{3}−\mathrm{circle}−\mathrm{problem}\:\mathrm{fit}\:\mathrm{here} \\ $$$${C}_{{d}} =\begin{pmatrix}{{x}_{{d}} }\\{{y}_{{d}} }\\{{z}_{{d}} }\end{pmatrix} \\ $$$$\mathrm{and}\:\mathrm{we}\:\mathrm{must}\:\mathrm{find}\:\mathrm{out}\:\mathrm{the}\:\mathrm{borders}\:\mathrm{for}\:{c}\:\:\mathrm{and}\:{d} \\ $$$$\mathrm{depending}\:\mathrm{on}\:{a}\:\mathrm{and}\:{b}\:\mathrm{so}\:\mathrm{that}\:\mathrm{a}\:\mathrm{circumsphere} \\ $$$$\mathrm{exists}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com