Question Number 60849 by Kunal12588 last updated on 26/May/19 | ||
![]() | ||
$${For}\:{all}\:\theta\:{in}\:\left[\mathrm{0},\:\pi/\mathrm{2}\right]\:{show}\:{that}\:{cos}\left({sin}\theta\right)\geqslant{sin}\left({cos}\theta\right). \\ $$ | ||
Commented by Prithwish sen last updated on 26/May/19 | ||
![]() | ||
$$\mathrm{when}\:\theta\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\:\right] \\ $$$$\mathrm{sin}\theta\:\mathrm{and}\:\mathrm{cos}\theta\:\mathrm{lies}\:\mathrm{between}\:\mathrm{0}\:\mathrm{to}\:\mathrm{1} \\ $$$$\therefore\:\mathrm{For}\:\alpha\in\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\mathrm{Cos}\alpha>\mathrm{Sin}\alpha\:\mathrm{for}\:\forall\:\alpha\:\in\left[\mathrm{0},\mathrm{1}\right] \\ $$$$\mathrm{i}.\mathrm{e}\:\mathrm{Cos}\left(\mathrm{Sin}\theta\right)>\mathrm{Sin}\left(\mathrm{Cos}\theta\right) \\ $$ | ||
Commented by Kunal12588 last updated on 26/May/19 | ||
![]() | ||
$${thanks}\:{sir} \\ $$ | ||
Commented by Kunal12588 last updated on 26/May/19 | ||
![]() | ||
$${but}\:{i}\:{don}'{t}\:{get}\:{it}\:{sir}\:{how}\: \\ $$$${cos}\:\alpha\:>\:{sin}\:\alpha\:\:\forall\:\alpha\in\:\left[\mathrm{0},\mathrm{1}\right]\: \\ $$ | ||
Commented by Prithwish sen last updated on 26/May/19 | ||
![]() | ||
$$\theta−\:\:\:\rightarrow\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:−−\:\:\rightarrow\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{cos}\left(\mathrm{sin}\theta\right)\rightarrow\:\mathrm{1}−−−\rightarrow\:\:\:\:\mathrm{0}.\mathrm{5} \\ $$$$\mathrm{sin}\left(\mathrm{cos}\theta\right)\rightarrow\:\mathrm{0}.\mathrm{8}−−−\rightarrow\:\mathrm{0} \\ $$$$\mathrm{is}\:\mathrm{this}\:\mathrm{ok}\:? \\ $$ | ||
Commented by Kunal12588 last updated on 26/May/19 | ||
![]() | ||
$${great}\:{sir}\:{you}\:{are}\:{amazing}\:{Thanks}\:{a}\:{lot}. \\ $$ | ||
Answered by tanmay last updated on 26/May/19 | ||
![]() | ||
$${when}\:\theta\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:{sin}\theta\in\left[\mathrm{0},\mathrm{1}\right]\:{so}\:{cos}\left({sin}\theta\right)\in\left[{cos}\mathrm{1},\mathrm{1}\right] \\ $$$${when}\:\theta\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right]\:{cos}\theta\in\left[\mathrm{0},\mathrm{1}\right]\:{so}\:{sin}\left({cos}\theta\right)\in\left[\mathrm{0},{sin}\mathrm{1}\right] \\ $$$${cos}\mathrm{1}>\mathrm{0} \\ $$$$\mathrm{1}>{sin}\mathrm{1} \\ $$$${so}\:{cos}\left({sin}\theta\right)>{sin}\left({cos}\theta\right) \\ $$$${attaching}\:{graph}... \\ $$ | ||
Commented by tanmay last updated on 26/May/19 | ||
![]() | ||
Commented by Kunal12588 last updated on 26/May/19 | ||
![]() | ||
$${thank}\:{you}\:{sir} \\ $$ | ||
Commented by Kunal12588 last updated on 26/May/19 | ||
![]() | ||
$${sir}\:{how}\:{ur}\:{first}\:{four}\:{lines}\:{imply} \\ $$$${cos}\left({sin}\theta\right)<{sin}\left({cos}\theta\right) \\ $$$${pls}\:{explain} \\ $$ | ||
Commented by tanmay last updated on 26/May/19 | ||
![]() | ||
$${pls}\:{refer}\:{the}\:{graph}\:...{all}\:{problems}\:{can}\:{not}\:{besolved}\:{simply} \\ $$$${by}\:{mathematics}...{it}\:{is}\:{better}\:{to}\:{see}\:{the}\:{graphs}.. \\ $$$$ \\ $$ | ||
Commented by Kunal12588 last updated on 26/May/19 | ||
![]() | ||
$${thanks}\:{sir}\:{graphs}\:{clarifies}\:{the}\:{thing}. \\ $$ | ||