Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 214509 by depressiveshrek last updated on 10/Dec/24

Find the volume of the solid of revolution  generated by rotating the area bounded  by y=x(2−x) and y=x about the y−axis.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{the}\:\mathrm{solid}\:\mathrm{of}\:\mathrm{revolution} \\ $$$$\mathrm{generated}\:\mathrm{by}\:\mathrm{rotating}\:\mathrm{the}\:\mathrm{area}\:\mathrm{bounded} \\ $$$$\mathrm{by}\:{y}={x}\left(\mathrm{2}−{x}\right)\:\mathrm{and}\:{y}={x}\:\mathrm{about}\:\mathrm{the}\:\mathrm{y}−\mathrm{axis}. \\ $$

Commented by mr W last updated on 11/Dec/24

you seem never to give any feedback  when people have answered your  questions?

$${you}\:{seem}\:{never}\:{to}\:{give}\:{any}\:{feedback} \\ $$$${when}\:{people}\:{have}\:{answered}\:{your} \\ $$$${questions}? \\ $$

Commented by depressiveshrek last updated on 11/Dec/24

Not true, sometimes I ask for more details  or disagree with the solution/proof. But  why does that matter?

$$\mathrm{Not}\:\mathrm{true},\:\mathrm{sometimes}\:\mathrm{I}\:\mathrm{ask}\:\mathrm{for}\:\mathrm{more}\:\mathrm{details} \\ $$$$\mathrm{or}\:\mathrm{disagree}\:\mathrm{with}\:\mathrm{the}\:\mathrm{solution}/\mathrm{proof}.\:\mathrm{But} \\ $$$$\mathrm{why}\:\mathrm{does}\:\mathrm{that}\:\mathrm{matter}? \\ $$

Commented by mr W last updated on 11/Dec/24

actually it doesn′t matter. i just  thought, normally when somebody  has recieved the help he had wished,  he′ll show some reaction, normally.

$${actually}\:{it}\:{doesn}'{t}\:{matter}.\:{i}\:{just} \\ $$$${thought},\:{normally}\:{when}\:{somebody} \\ $$$${has}\:{recieved}\:{the}\:{help}\:{he}\:{had}\:{wished}, \\ $$$${he}'{ll}\:{show}\:{some}\:{reaction},\:{normally}. \\ $$

Commented by depressiveshrek last updated on 11/Dec/24

Okay then I will start to give feedback  from now on more frequently.

$$\mathrm{Okay}\:\mathrm{then}\:\mathrm{I}\:\mathrm{will}\:\mathrm{start}\:\mathrm{to}\:\mathrm{give}\:\mathrm{feedback} \\ $$$$\mathrm{from}\:\mathrm{now}\:\mathrm{on}\:\mathrm{more}\:\mathrm{frequently}. \\ $$

Answered by mr W last updated on 11/Dec/24

x=y  x^2 −2x+1=1−y ⇒x=1−(√(1−y))  1−(√(1−y))=y ⇒y=0, 1  V=∫_0 ^1 π[y^2 −(1−(√(1−y)))^2 ]dy   =∫_0 ^1 π(y^2 +y−2+2(√(1−y)))dy   =π[(y^3 /3)+(y^2 /2)−2y−(4/3)(1−y)^(3/2) ]_0 ^1   =π((1/3)+(1/2)−2+(4/3))  =(π/6) ✓

$${x}={y} \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}=\mathrm{1}−{y}\:\Rightarrow{x}=\mathrm{1}−\sqrt{\mathrm{1}−{y}} \\ $$$$\mathrm{1}−\sqrt{\mathrm{1}−{y}}={y}\:\Rightarrow{y}=\mathrm{0},\:\mathrm{1} \\ $$$${V}=\int_{\mathrm{0}} ^{\mathrm{1}} \pi\left[{y}^{\mathrm{2}} −\left(\mathrm{1}−\sqrt{\mathrm{1}−{y}}\right)^{\mathrm{2}} \right]{dy} \\ $$$$\:=\int_{\mathrm{0}} ^{\mathrm{1}} \pi\left({y}^{\mathrm{2}} +{y}−\mathrm{2}+\mathrm{2}\sqrt{\mathrm{1}−{y}}\right){dy} \\ $$$$\:=\pi\left[\frac{{y}^{\mathrm{3}} }{\mathrm{3}}+\frac{{y}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}{y}−\frac{\mathrm{4}}{\mathrm{3}}\left(\mathrm{1}−{y}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\pi\left(\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}+\frac{\mathrm{4}}{\mathrm{3}}\right) \\ $$$$=\frac{\pi}{\mathrm{6}}\:\checkmark \\ $$

Commented by depressiveshrek last updated on 11/Dec/24

Thank you

$$\mathrm{Thank}\:\mathrm{you} \\ $$

Commented by mr W last updated on 11/Dec/24

alternative method without  integral calculation:  V_1 =((2×1×1)/3)×2π×(((5×1)/8))=((5π)/6)  V_2 =((1×1)/2)×2π×(((2×1)/3))=((2π)/3)  V=V_1 −V_2 =(π/6)

$${alternative}\:{method}\:{without} \\ $$$${integral}\:{calculation}: \\ $$$${V}_{\mathrm{1}} =\frac{\mathrm{2}×\mathrm{1}×\mathrm{1}}{\mathrm{3}}×\mathrm{2}\pi×\left(\frac{\mathrm{5}×\mathrm{1}}{\mathrm{8}}\right)=\frac{\mathrm{5}\pi}{\mathrm{6}} \\ $$$${V}_{\mathrm{2}} =\frac{\mathrm{1}×\mathrm{1}}{\mathrm{2}}×\mathrm{2}\pi×\left(\frac{\mathrm{2}×\mathrm{1}}{\mathrm{3}}\right)=\frac{\mathrm{2}\pi}{\mathrm{3}} \\ $$$${V}={V}_{\mathrm{1}} −{V}_{\mathrm{2}} =\frac{\pi}{\mathrm{6}} \\ $$

Commented by mr W last updated on 11/Dec/24

Commented by mr W last updated on 11/Dec/24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com